- -

Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prasad, Gopi es_ES
dc.contributor.author Deshwal, Sheetal es_ES
dc.contributor.author Srivastav, Rupesh K. es_ES
dc.date.accessioned 2023-11-14T13:55:23Z
dc.date.available 2023-11-14T13:55:23Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199647
dc.description.abstract [EN] In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of such findings we present a Kelisky-Rivlin type result for a class of Bernstein type special operators introduced by Deo et. al. [Appl. Math. Comput. 201, (2008), 604-612 ] on the space C([ 0, n/n+1]). In this way, these investigations extend, modify and generalize some prominent recent fixed point results of the existing literature. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Set-valued mapping es_ES
dc.subject Bernstein operator es_ES
dc.title Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18993
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Prasad, G.; Deshwal, S.; Srivastav, RK. (2023). Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation. Applied General Topology. 24(2):307-322. https://doi.org/10.4995/agt.2023.18993 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18993 es_ES
dc.description.upvformatpinicio 307 es_ES
dc.description.upvformatpfin 322 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18993 es_ES
dc.description.references A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17, no. 4 (2015), 693-702. https://doi.org/10.1007/s11784-015-0247-y es_ES
dc.description.references A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms 11, no. 7 (2022), 316. https://doi.org/10.3390/axioms11070316 es_ES
dc.description.references H. Argoubi, M. Jleli and B. Samet, The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph, Fixed Point Theory Appl. 2015 (2015), 113. https://doi.org/10.1186/s13663-015-0361-y es_ES
dc.description.references S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references S. K. Bhandari, D. Gopal and P. Konar, Probabilistic α-min Ciric type contraction results using a control function, AIMS Mathematics 5, no. 2 (2020), 1186-1198. https://doi.org/10.3934/math.2020082 es_ES
dc.description.references N. Deo, M. A. Noor and M. A. Siddiqui, On approximation by a class of new Bernstein type operators, Appl. Math. Comput. 201 (2008), 604-612. https://doi.org/10.1016/j.amc.2007.12.056 es_ES
dc.description.references T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013), 507-517. https://doi.org/10.1016/j.jmaa.2013.04.014 es_ES
dc.description.references J.-X. Fang, Fixed point theorems of local contraction mappings on Menger spaces, Appl. Math. Mech. 12 (1991), 363-372. https://doi.org/10.1007/BF02020399 es_ES
dc.description.references J.-X. Fang, A note on fixed point theorems of Hadžić, Fuzzy Sets Syst. 48 (1992), 391-395. https://doi.org/10.1016/0165-0114(92)90355-8 es_ES
dc.description.references J.-X. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal. 71 (2009), 1833-1843. https://doi.org/10.1016/j.na.2009.01.018 es_ES
dc.description.references O. Hadžić, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Fuzzy Sets Syst. 88 (1997), 219-226. https://doi.org/10.1016/S0165-0114(96)00072-3 es_ES
dc.description.references O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht (2001). https://doi.org/10.1007/978-94-017-1560-7 es_ES
dc.description.references J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1 es_ES
dc.description.references T. Kamran, M. Samreen and N. Shahzad, Probabilistic G-contractions, Fixed Point Theory Appl. 2013 (2013), 223. https://doi.org/10.1186/1687-1812-2013-223 es_ES
dc.description.references R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pac. J. Math. 21 (1967), 511-520. https://doi.org/10.2140/pjm.1967.21.511 es_ES
dc.description.references B. Kolman, R. C. Busby and S. Ross, Discrete mathematical structures, Third Edition, PHI Pvt. Ltd., New Delhi, 2000. es_ES
dc.description.references S. Lipschutz, Schaum's Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, (1964). es_ES
dc.description.references J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5 es_ES
dc.description.references S. B. Jr. Nadler, Multivalued contraction mappings. Pac. J. Math. 30 (1969), 475-487. https://doi.org/10.2140/pjm.1969.30.475 es_ES
dc.description.references G. Prasad, Coincidence points of relational ψ-contractions and an application, Afrika Mathematica 32, no. 6-7 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6 es_ES
dc.description.references G. Prasad, Fixed points of Kannan contractive mappings in relational metric spaces, J. Anal. 29, no. 3 (2021), 669-684. https://doi.org/10.1007/s41478-020-00273-7 es_ES
dc.description.references G. Prasad and H. Işık, On solution of boundary value problems via weak contractions, J. Funct. Spaces 2022 (2022), Article ID 6799205. https://doi.org/10.1155/2022/6799205 es_ES
dc.description.references A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132, no. 5 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4 es_ES
dc.description.references B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13, no. 2 (2012), 82-97. es_ES
dc.description.references B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pac. J. Math. 10 (1960), 673-675. https://doi.org/10.2140/pjm.1960.10.673 es_ES
dc.description.references B. Schweizer and Sklar, Probabilistic Metric Spaces, North-Holland, New York (1983). es_ES
dc.description.references M. Turinici, Fixed points for monotone iteratively local contractions, Demonstr. Math. 19, no. 1 (1986), 171-180. es_ES
dc.description.references M. Turinici, Ran and Reuring's theorems in ordered metric spaces, J. Indian Math. Soc. 78 (2011), 207-214. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem