- -

Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload

Show full item record

Desantes, J.; Novella Rosa, R.; García-Cuevas González, LM.; López-Juárez, M. (2022). Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload. Transactions on Aerospace Research. 267(2):13-30. https://doi.org/10.2478/tar-2022-0008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199670

Files in this item

Item Metadata

Title: Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload
Author: Desantes, J.M. Novella Rosa, Ricardo García-Cuevas González, Luis Miguel López-Juárez, Marcos
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
[EN] Among the possible electric powerplants currently driving low-payload UAVs (up to around 10 kgof payload), batteries offer certain clear benefits, but for medium-payload operation such as aerotaxisand heavy-cargo ...[+]
Subjects: Unmanned Aerial Vehicle , Fuel cell , Hydrogen , Optimization
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Transactions on Aerospace Research. (eissn: 2545-2835 )
DOI: 10.2478/tar-2022-0008
Publisher:
Sciendo
Publisher version: https://doi.org/10.2478/tar-2022-0008
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119468RA-I00/ES/DISEÑO, CONSTRUCCION Y CONTROL PARA LA GESTION OPTIMA DE MISIONES EN AERONAVES NO TRIPULADAS (UAVS) DE RANGO EXTENDIDO BASADAS EN PILA DE HIDROGENO Y PROPULSION DISTRIBUIDA/
info:eu-repo/grantAgreement/ //FPU19%2F00550//AYUDA PREDOCTORAL FPU-LOPEZ JUAREZ. PROYECTO: ANALYSIS OF THE USE OF HYDROGEN IN POWERPLANTS FOR FUTURE TRANSPORT APPLICATIONS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//IDIFEDER%2F2021%2F039//ANALISIS Y OPTIMIZACION MULTI-ESCALA DE LA ARQUITECTURA DE VEHICULOS DE PILA DE COMBUSTIBLE DE HIDROGENO PARA PROMOVER LA DESCARBONIZACION DEL SECTOR TRANSPORTE/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GV%2F2021%2F069//UAVs más sostenibles a través de la propulsión eléctrica distribuida, la ingestión de capa límite y el control óptimo/
info:eu-repo/grantAgreement/AEI//EQC2019-005968-P-AR//HIDROGENO COMO COMBUSTIBLE EN MOTORES DE COMBUSTION INTERNA DE VEHICULOS HIBRIDOS Y CONVENCIONALES/
Thanks:
this research has been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty training (FPU) program (FPU19/00550). this work is part of the project PID2020-119468rA-I00 ...[+]
Type: Artículo

References

[1] European Commission, 2019, “A European Green Deal: Striving to be the first climate-neutral continent”, URL https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

[2] European Commission, “European Partnership for Clean Aviation”, URL https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/11904-European-Partnership-for-Clean-Aviation_en.

[3] Chiaramonti, D. “Sustainable Aviation Fuels: the challenge of decarbonization.” Energy Procedia Vol. 158 (2019). pp. 1202–1207 DOI 10.1016/j.egypro.2019.01.308. Innovative Solutions for Energy Transitions. [+]
[1] European Commission, 2019, “A European Green Deal: Striving to be the first climate-neutral continent”, URL https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

[2] European Commission, “European Partnership for Clean Aviation”, URL https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/11904-European-Partnership-for-Clean-Aviation_en.

[3] Chiaramonti, D. “Sustainable Aviation Fuels: the challenge of decarbonization.” Energy Procedia Vol. 158 (2019). pp. 1202–1207 DOI 10.1016/j.egypro.2019.01.308. Innovative Solutions for Energy Transitions.

[4] Lee, S., Kim, G. and Bae, C. “Effect of injection and ignition timing on a hydrogen-lean stratified charge combustion engine.” International Journal of Engine Research. 0nlineFirst (2021). DOI 10.1177/14680874211034682.

[5] Caton, P.A. and Pruitt, J.T. “Homogeneous charge compression ignition of hydrogen in a single-cylinder diesel engine.” International Journal of Engine Research Vol. 10 No. 1. (2009). pp. 45–63. DOI 10.1243/14680874Jer02208.

[6] Christo, F.C., Levy, Y., Costa, M. and Balelang, G.A. “Effect of jet momentum flux and heat density on NOx emission in a flameless gas turbine combustor.” Aerospace Science and Technology Vol. 119 (2021). p. 107137. DOI 10.1016/j.ast.2021.107137.

[7] Baroutaji, A., Wilberforce, T., Ramadan, M. and Olabi, A.G. “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors.” Renewable and Sustainable Energy Reviews Vol. 106 (2019). pp. 31–40. DOI 10.1016/j.rser.2019.02.022.

[8] Molina, S., Novella, R., Pla, B. and Lopez-Juarez, M. “Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions.” Applied Energy Vol. 285 (2021) p. 116469. DOI 10.1016/j.apenergy.2021.116469.

[9] Desantes, J.M., Novella, R., Pla, B. and Lopez-Juarez, M. “Impact of fuel cell range extender powertrain design on greenhouse gases and NOx emissions in automotive applications.” Applied Energy Vol. 302 (2021). p. 117526. DOI 10.1016/j.apenergy.2021.117526.

[10] Terada, I. and Nakagawa, H. “Polymer electrolyte Fuel Cell.” Kobunshi Vol. 57 No. 7 (2008). pp. 498–501. DOI 10.1295/kobunshi.57.498.

[11] Murschenhofer, D., Kuzdas, D., Braun, S. and Jakubek, S., “A real-time capable quasi-2D proton exchange membrane fuel cell model.” Energy Conversion and Management, Vol. 162 (2018). pp. 159-175. DOI 10.1016/j.enconman.2018.02.028.

[12] Corbo, P., Migliardini, F. and Veneri, O. “Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications.” Energy Conversion and Management Vol. 49 No. 10 (2008). pp. 2688–2697. DOI 10.1016/j.enconman.2008.04.001.

[13] Corbo, P., Migliardini, F. and Veneri, O. “Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application.” Energy Conversion and Management Vol. 48 No. 8 (2007). pp. 2365–2374. DOI 10.1016/j.enconman.2007.03.009.

[14] Teng, T., Zhang, X., Dong, H. and Xue, Q. “A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle.” International Journal of Hydrogen Energy Vol. 45 No. 39 (2020). pp. 20293–20303. DOI 10.1016/j.ijhydene.2019.12.202.

[15] Burress, T.A., Campbell, S.L., Coomer, C.L., Ayers, C.W., Wereszczak, A.A., Cunningham, J.P., Marlino, L.D, Seiber, L.E. and Lin, H., “Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System.”, Oak Ridge National Laboratory, Tennessee, USA. (2011).10.2172/1007833

[16] Airbus Defence & Space. “Atlante: Tactical fixed wing multirole UAS for maximized operational capability and mission flexibility.” (2014) URL https://www.airbus.com/content/dam/products-and-solutions/unmanned-air-systems/atlante/atlante-brochure.pdf.

[17] Cassidian. “Atlante: Tactical Unmanned Aerial System for National Security.” (2014) URL https://www.airtn.eu/downloads/atlante-para-airtn_v2.pdf.

[18] Rivard, E., Trudeau, M. and Zaghib, K. “Hydrogen storage for mobility: A review.” Materials Vol. 12 No. 12 (2019). DOI 10.3390/ma12121973.663099131248099

[19] U.S. Department Of Energy. “DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications.” (2015). URL https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications.

[20] Howell, D., Cunningham, B., Duong, T. and Faguy, P. “Overview of the DOE VTO Advanced Battery R&D Program.” U.S. Department Of energy (2016).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record