- -

Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes, J.M. es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author López-Juárez, Marcos es_ES
dc.date.accessioned 2023-11-14T19:03:02Z
dc.date.available 2023-11-14T19:03:02Z
dc.date.issued 2022-06-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199670
dc.description.abstract [EN] Among the possible electric powerplants currently driving low-payload UAVs (up to around 10 kgof payload), batteries offer certain clear benefits, but for medium-payload operation such as aerotaxisand heavy-cargo transportation UAVs, battery capacity requirements restrict their usage due to highweight and volume. In light of this situation, fuel cell (FC) systems (FCS) offer clear benefits over batteriesfor the medium-payload UAV segment (> 50 kg). Nevertheless, studies regarding the application of FCSpowerplants to this UAV segment are limited and the in-flight performance has not been clearly analysed.In order to address this knowledge gap, a feasibility analysis of these particular applications powered byFCS is performed in this study. A validated FC stack model (40 kW of maximum power) was integratedinto a balance of plant to conform an FCS. As a novelty, the management of the FCS was optimized tomaximize the FCS efficiency at different altitudes up to 12500 ft, so that the operation always impliesthe lowest H2consumption regardless of the altitude. In parallel, an UAV numerical model was developedbased on the AtLANte vehicle and characterized by calculating the aerodynamic coefficients throughCFD simulations. then, both models were integrated into a 0D-1D modelling platform together withan energy management strategy optimizer algorithm and a suitable propeller model. With the preliminaryresults obtained from the FCS and UAV models, it was possible to ascertain the range and endurance ofthe vehicle. As a result, it was concluded that the combination of both technologies could offer a rangeover 600 km and an endurance over 5 h. Finally, with the integrated UAV-FCS model, a flight profiledescribing a medium altitude, medium endurance mission was designed and used to analyse the viabilityof FC-powered UAV. the results showed how UAVs powered by FCS are viable for the considered aircraftsegment, providing competitive values of specific range and endurance. es_ES
dc.description.sponsorship this research has been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty training (FPU) program (FPU19/00550). this work is part of the project PID2020-119468rA-I00 funded by MCIN/AeI/ . Part of the research was also funded by Generalitat Valenciana and by ¿erDF A way of making europe¿ through grant number IDIFeDer/2021/039, as part of the program ¿Subvenciones para Infraestructuras y equipamiento de I+D+i¿. It was also partially funded by the Conselleria d¿Innovació, Universitats, Ciència i Societat Digital of the Generalitat Valenciana through grant with expedient number GV/2021/069 of the program for ¿Grupos de Investigación emergentes GV/2021¿.the hydrogen activities were also funded by grant eQC2019-005968-P funded by MCIN/AeI/ and by ¿erDF A way of making europe¿. es_ES
dc.language Inglés es_ES
dc.publisher Sciendo es_ES
dc.relation.ispartof Transactions on Aerospace Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Unmanned Aerial Vehicle es_ES
dc.subject Fuel cell es_ES
dc.subject Hydrogen es_ES
dc.subject Optimization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/tar-2022-0008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119468RA-I00/ES/DISEÑO, CONSTRUCCION Y CONTROL PARA LA GESTION OPTIMA DE MISIONES EN AERONAVES NO TRIPULADAS (UAVS) DE RANGO EXTENDIDO BASADAS EN PILA DE HIDROGENO Y PROPULSION DISTRIBUIDA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU19%2F00550//AYUDA PREDOCTORAL FPU-LOPEZ JUAREZ. PROYECTO: ANALYSIS OF THE USE OF HYDROGEN IN POWERPLANTS FOR FUTURE TRANSPORT APPLICATIONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//IDIFEDER%2F2021%2F039//ANALISIS Y OPTIMIZACION MULTI-ESCALA DE LA ARQUITECTURA DE VEHICULOS DE PILA DE COMBUSTIBLE DE HIDROGENO PARA PROMOVER LA DESCARBONIZACION DEL SECTOR TRANSPORTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GV%2F2021%2F069//UAVs más sostenibles a través de la propulsión eléctrica distribuida, la ingestión de capa límite y el control óptimo/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2019-005968-P-AR//HIDROGENO COMO COMBUSTIBLE EN MOTORES DE COMBUSTION INTERNA DE VEHICULOS HIBRIDOS Y CONVENCIONALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Desantes, J.; Novella Rosa, R.; García-Cuevas González, LM.; López-Juárez, M. (2022). Feasibility Study for a Fuel Cell-Powered Unmanned Aerial Vehicle with a 75 kg Payload. Transactions on Aerospace Research. 267(2):13-30. https://doi.org/10.2478/tar-2022-0008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2478/tar-2022-0008 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 267 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2545-2835 es_ES
dc.relation.pasarela S\474171 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES
dc.description.references [1] European Commission, 2019, “A European Green Deal: Striving to be the first climate-neutral continent”, URL https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. es_ES
dc.description.references [2] European Commission, “European Partnership for Clean Aviation”, URL https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/11904-European-Partnership-for-Clean-Aviation_en. es_ES
dc.description.references [3] Chiaramonti, D. “Sustainable Aviation Fuels: the challenge of decarbonization.” Energy Procedia Vol. 158 (2019). pp. 1202–1207 DOI 10.1016/j.egypro.2019.01.308. Innovative Solutions for Energy Transitions. es_ES
dc.description.references [4] Lee, S., Kim, G. and Bae, C. “Effect of injection and ignition timing on a hydrogen-lean stratified charge combustion engine.” International Journal of Engine Research. 0nlineFirst (2021). DOI 10.1177/14680874211034682. es_ES
dc.description.references [5] Caton, P.A. and Pruitt, J.T. “Homogeneous charge compression ignition of hydrogen in a single-cylinder diesel engine.” International Journal of Engine Research Vol. 10 No. 1. (2009). pp. 45–63. DOI 10.1243/14680874Jer02208. es_ES
dc.description.references [6] Christo, F.C., Levy, Y., Costa, M. and Balelang, G.A. “Effect of jet momentum flux and heat density on NOx emission in a flameless gas turbine combustor.” Aerospace Science and Technology Vol. 119 (2021). p. 107137. DOI 10.1016/j.ast.2021.107137. es_ES
dc.description.references [7] Baroutaji, A., Wilberforce, T., Ramadan, M. and Olabi, A.G. “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors.” Renewable and Sustainable Energy Reviews Vol. 106 (2019). pp. 31–40. DOI 10.1016/j.rser.2019.02.022. es_ES
dc.description.references [8] Molina, S., Novella, R., Pla, B. and Lopez-Juarez, M. “Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions.” Applied Energy Vol. 285 (2021) p. 116469. DOI 10.1016/j.apenergy.2021.116469. es_ES
dc.description.references [9] Desantes, J.M., Novella, R., Pla, B. and Lopez-Juarez, M. “Impact of fuel cell range extender powertrain design on greenhouse gases and NOx emissions in automotive applications.” Applied Energy Vol. 302 (2021). p. 117526. DOI 10.1016/j.apenergy.2021.117526. es_ES
dc.description.references [10] Terada, I. and Nakagawa, H. “Polymer electrolyte Fuel Cell.” Kobunshi Vol. 57 No. 7 (2008). pp. 498–501. DOI 10.1295/kobunshi.57.498. es_ES
dc.description.references [11] Murschenhofer, D., Kuzdas, D., Braun, S. and Jakubek, S., “A real-time capable quasi-2D proton exchange membrane fuel cell model.” Energy Conversion and Management, Vol. 162 (2018). pp. 159-175. DOI 10.1016/j.enconman.2018.02.028. es_ES
dc.description.references [12] Corbo, P., Migliardini, F. and Veneri, O. “Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications.” Energy Conversion and Management Vol. 49 No. 10 (2008). pp. 2688–2697. DOI 10.1016/j.enconman.2008.04.001. es_ES
dc.description.references [13] Corbo, P., Migliardini, F. and Veneri, O. “Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application.” Energy Conversion and Management Vol. 48 No. 8 (2007). pp. 2365–2374. DOI 10.1016/j.enconman.2007.03.009. es_ES
dc.description.references [14] Teng, T., Zhang, X., Dong, H. and Xue, Q. “A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle.” International Journal of Hydrogen Energy Vol. 45 No. 39 (2020). pp. 20293–20303. DOI 10.1016/j.ijhydene.2019.12.202. es_ES
dc.description.references [15] Burress, T.A., Campbell, S.L., Coomer, C.L., Ayers, C.W., Wereszczak, A.A., Cunningham, J.P., Marlino, L.D, Seiber, L.E. and Lin, H., “Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System.”, Oak Ridge National Laboratory, Tennessee, USA. (2011).10.2172/1007833 es_ES
dc.description.references [16] Airbus Defence & Space. “Atlante: Tactical fixed wing multirole UAS for maximized operational capability and mission flexibility.” (2014) URL https://www.airbus.com/content/dam/products-and-solutions/unmanned-air-systems/atlante/atlante-brochure.pdf. es_ES
dc.description.references [17] Cassidian. “Atlante: Tactical Unmanned Aerial System for National Security.” (2014) URL https://www.airtn.eu/downloads/atlante-para-airtn_v2.pdf. es_ES
dc.description.references [18] Rivard, E., Trudeau, M. and Zaghib, K. “Hydrogen storage for mobility: A review.” Materials Vol. 12 No. 12 (2019). DOI 10.3390/ma12121973.663099131248099 es_ES
dc.description.references [19] U.S. Department Of Energy. “DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications.” (2015). URL https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications. es_ES
dc.description.references [20] Howell, D., Cunningham, B., Duong, T. and Faguy, P. “Overview of the DOE VTO Advanced Battery R&D Program.” U.S. Department Of energy (2016). es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem