- -

Some properties defined by relative versions of star-covering properties II

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some properties defined by relative versions of star-covering properties II

Mostrar el registro completo del ítem

Bonanzinga, M.; Giacopello, D.; Maesano, F. (2023). Some properties defined by relative versions of star-covering properties II. Applied General Topology. 24(2):391-405. https://doi.org/10.4995/agt.2023.17926

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199682

Ficheros en el ítem

Metadatos del ítem

Título: Some properties defined by relative versions of star-covering properties II
Autor: Bonanzinga, Maddalena Giacopello, Davide Maesano, Fortunato
Fecha difusión:
Resumen:
[EN] In this paper we consider some recent relative versions of Menger property called set strongly star Menger and set star Menger properties and the corresponding Hurewicz-type properties. In particular, using [2], we ...[+]
Palabras clave: Star compact , Strongly star compact , Star Lindelöf , Strongly star Lindelöf , Star Menger , Strongly star Menger , Star Hurewicz , Strongly star Hurewicz , Set properties
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.17926
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.17926
Agradecimientos:
The research was supported by “National Group for Algebric and Geometric Structures, and their Applications” (GNSAGA-INdAM)
Tipo: Artículo

References

M. Bonanzinga, F. Cammaroto, and Lj.D.R. Kočinac, Star-Hurewicz and related properties, Applied General Topology 5, no. 1 (2004), 79-89. https://doi.org/10.4995/agt.2004.1996

M. Bonanzinga, and F. Maesano, Some properties defined by relative versions of star-covering properties, Topology Appl. 306, no. 1 (2020), 107923. https://doi.org/10.1016/j.topol.2021.107923

M. Bonanzinga, and M. V. Matveev, Products of star-Lindelöf and related spaces, Houston Journal of Mathematics 27, no. 1 (2001), 45-57. [+]
M. Bonanzinga, F. Cammaroto, and Lj.D.R. Kočinac, Star-Hurewicz and related properties, Applied General Topology 5, no. 1 (2004), 79-89. https://doi.org/10.4995/agt.2004.1996

M. Bonanzinga, and F. Maesano, Some properties defined by relative versions of star-covering properties, Topology Appl. 306, no. 1 (2020), 107923. https://doi.org/10.1016/j.topol.2021.107923

M. Bonanzinga, and M. V. Matveev, Products of star-Lindelöf and related spaces, Houston Journal of Mathematics 27, no. 1 (2001), 45-57.

M. Bonanzinga, and M.V. Matveev, Some covering properties for ψ-spaces, Mat. Vesnik 61 (2009), 3-11.

J. Casas-de la Rosa, S. A. Garcia-Balan, and P. J. Szeptycki, Some star and strongly star selection principles, Topolology Appl. 258 (2019), 572-587. https://doi.org/10.1016/j.topol.2017.11.034

E. K. van Douwen, The integers and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V. 1984, 111-167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9

E. K. van Douwen, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103. https://doi.org/10.1016/0166-8641(91)90077-Y

R. Engelking, General Topology, 2nd Edition, Sigma Ser. Pure Math., Vol. 6 Heldermann, Berlin, 1989.

W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970), 1-9. https://doi.org/10.4064/fm-67-1-1-9

S. Ikenaga, Topological concepts between "Lindelof" and "Pseudo-Lindelof", Research Reports of Nara National College of Technology 26 (1990), 103-108.

S. Ikenaga, A class which contains Lindelof spaces, separable spaces and countably compact spaces, Memories of Numazu College Technology, 02862794, Numazu College of Technology 18 (1983), 105-108.

S. Ikenaga, and T. Tani, On a topological concept between countable compactness and pseudocompactness, National Institute of Technology Numazu College research annual 15 (1980), 139-142.

Lj. D. R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, no. 3-4 (1999), 421-431. https://doi.org/10.5486/PMD.1999.2097

Lj. D. R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999), 129-140.

Lj. D. R. Kočinac, and S. Konca, Set-Menger and related properties, Topology Appl. 275 (2020), 106996. https://doi.org/10.1016/j.topol.2019.106996

Lj. D. R. Kočinac, S. Konca, and S. Singh, Variations of some star selection properties, AIP Conference Proceedings (2021), 2334.

https://doi.org/10.1063/5.0042301

Lj. D. R. Kočinac, S. Konca, and S. Singh, Set star-Menger and set strongly star-Menger spaces, Math. Slovaka 72, no. 1 (2022), 185-196. https://doi.org/10.1515/ms-2022-0013

Lj. D. R. Kočinac, and S. Singh, On the set version of selectively star-ccc spaces, Hindawi Journal of Mathematics 2020 (2020), Article ID 9274503. https://doi.org/10.1155/2020/9274503

S. Konca, Weaker forms of some star selection properties, Konuralp Journal of Mathematics 9, no. 2 (2021), 245--249.

S. Konca, and Lj. D. R. Kočinac, Set-star Menger and related spaces, 6th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2019), June 12-15, 2019, Istanbul, Turkey. 2019.

M. V. Matveev, How weak is weak extent, Topology Appl. 119 (2002), 229-232. https://doi.org/10.1016/S0166-8641(01)00061-X

M. Sakai, Star versions of the Menger property, Topology Appl. 170 (2014), 22-34. https://doi.org/10.1016/j.topol.2014.07.006

S. Singh, Set-starcompact and related spaces, Afrika Mat. 32 (2021), 1389-1397. https://doi.org/10.1007/s13370-021-00906-5

S. Singh, and Lj. Kočinac, Star versions of Hurewicz spaces, Hacet. J. Math. Stat. 50, no. 5 (2021), 1325-1333. https://doi.org/10.15672/hujms.819719

Y. K. Song, Remarks on strongly star-Menger spaces, Comment. Math. Univ. Carolinae 54, no. 1 (2013), 97-104.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem