Mostrar el registro sencillo del ítem
dc.contributor.author | Bonanzinga, Maddalena | es_ES |
dc.contributor.author | Giacopello, Davide | es_ES |
dc.contributor.author | Maesano, Fortunato | es_ES |
dc.date.accessioned | 2023-11-15T07:22:43Z | |
dc.date.available | 2023-11-15T07:22:43Z | |
dc.date.issued | 2023-10-02 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/199682 | |
dc.description.abstract | [EN] In this paper we consider some recent relative versions of Menger property called set strongly star Menger and set star Menger properties and the corresponding Hurewicz-type properties. In particular, using [2], we "easily" prove that the set strong star Menger and set strong star Hurewicz properties are between countable compactness and the property of having countable extent. Also we show that the extent of a regular set star Menger or a set star Hurewicz space cannot exceed c. Moreover, we construct (1) a consistent example of a set star Menger (set star Hurewicz) space which is not set strongly star Menger (set strongly star Hurewicz) and show that (2) the product of a set star Menger (set star Hurewicz) space with a compact space need not be set star Menger (set star Hurewicz). In particular, (1) and (2) answer some questions posed by Kočinac, Konca and Singh in [17] and [23]. | es_ES |
dc.description.sponsorship | The research was supported by “National Group for Algebric and Geometric Structures, and their Applications” (GNSAGA-INdAM) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Star compact | es_ES |
dc.subject | Strongly star compact | es_ES |
dc.subject | Star Lindelöf | es_ES |
dc.subject | Strongly star Lindelöf | es_ES |
dc.subject | Star Menger | es_ES |
dc.subject | Strongly star Menger | es_ES |
dc.subject | Star Hurewicz | es_ES |
dc.subject | Strongly star Hurewicz | es_ES |
dc.subject | Set properties | es_ES |
dc.title | Some properties defined by relative versions of star-covering properties II | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2023.17926 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bonanzinga, M.; Giacopello, D.; Maesano, F. (2023). Some properties defined by relative versions of star-covering properties II. Applied General Topology. 24(2):391-405. https://doi.org/10.4995/agt.2023.17926 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2023.17926 | es_ES |
dc.description.upvformatpinicio | 391 | es_ES |
dc.description.upvformatpfin | 405 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17926 | es_ES |
dc.description.references | M. Bonanzinga, F. Cammaroto, and Lj.D.R. Kočinac, Star-Hurewicz and related properties, Applied General Topology 5, no. 1 (2004), 79-89. https://doi.org/10.4995/agt.2004.1996 | es_ES |
dc.description.references | M. Bonanzinga, and F. Maesano, Some properties defined by relative versions of star-covering properties, Topology Appl. 306, no. 1 (2020), 107923. https://doi.org/10.1016/j.topol.2021.107923 | es_ES |
dc.description.references | M. Bonanzinga, and M. V. Matveev, Products of star-Lindelöf and related spaces, Houston Journal of Mathematics 27, no. 1 (2001), 45-57. | es_ES |
dc.description.references | M. Bonanzinga, and M.V. Matveev, Some covering properties for ψ-spaces, Mat. Vesnik 61 (2009), 3-11. | es_ES |
dc.description.references | J. Casas-de la Rosa, S. A. Garcia-Balan, and P. J. Szeptycki, Some star and strongly star selection principles, Topolology Appl. 258 (2019), 572-587. https://doi.org/10.1016/j.topol.2017.11.034 | es_ES |
dc.description.references | E. K. van Douwen, The integers and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V. 1984, 111-167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9 | es_ES |
dc.description.references | E. K. van Douwen, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103. https://doi.org/10.1016/0166-8641(91)90077-Y | es_ES |
dc.description.references | R. Engelking, General Topology, 2nd Edition, Sigma Ser. Pure Math., Vol. 6 Heldermann, Berlin, 1989. | es_ES |
dc.description.references | W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970), 1-9. https://doi.org/10.4064/fm-67-1-1-9 | es_ES |
dc.description.references | S. Ikenaga, Topological concepts between "Lindelof" and "Pseudo-Lindelof", Research Reports of Nara National College of Technology 26 (1990), 103-108. | es_ES |
dc.description.references | S. Ikenaga, A class which contains Lindelof spaces, separable spaces and countably compact spaces, Memories of Numazu College Technology, 02862794, Numazu College of Technology 18 (1983), 105-108. | es_ES |
dc.description.references | S. Ikenaga, and T. Tani, On a topological concept between countable compactness and pseudocompactness, National Institute of Technology Numazu College research annual 15 (1980), 139-142. | es_ES |
dc.description.references | Lj. D. R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, no. 3-4 (1999), 421-431. https://doi.org/10.5486/PMD.1999.2097 | es_ES |
dc.description.references | Lj. D. R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999), 129-140. | es_ES |
dc.description.references | Lj. D. R. Kočinac, and S. Konca, Set-Menger and related properties, Topology Appl. 275 (2020), 106996. https://doi.org/10.1016/j.topol.2019.106996 | es_ES |
dc.description.references | Lj. D. R. Kočinac, S. Konca, and S. Singh, Variations of some star selection properties, AIP Conference Proceedings (2021), 2334. | es_ES |
dc.description.references | https://doi.org/10.1063/5.0042301 | es_ES |
dc.description.references | Lj. D. R. Kočinac, S. Konca, and S. Singh, Set star-Menger and set strongly star-Menger spaces, Math. Slovaka 72, no. 1 (2022), 185-196. https://doi.org/10.1515/ms-2022-0013 | es_ES |
dc.description.references | Lj. D. R. Kočinac, and S. Singh, On the set version of selectively star-ccc spaces, Hindawi Journal of Mathematics 2020 (2020), Article ID 9274503. https://doi.org/10.1155/2020/9274503 | es_ES |
dc.description.references | S. Konca, Weaker forms of some star selection properties, Konuralp Journal of Mathematics 9, no. 2 (2021), 245--249. | es_ES |
dc.description.references | S. Konca, and Lj. D. R. Kočinac, Set-star Menger and related spaces, 6th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2019), June 12-15, 2019, Istanbul, Turkey. 2019. | es_ES |
dc.description.references | M. V. Matveev, How weak is weak extent, Topology Appl. 119 (2002), 229-232. https://doi.org/10.1016/S0166-8641(01)00061-X | es_ES |
dc.description.references | M. Sakai, Star versions of the Menger property, Topology Appl. 170 (2014), 22-34. https://doi.org/10.1016/j.topol.2014.07.006 | es_ES |
dc.description.references | S. Singh, Set-starcompact and related spaces, Afrika Mat. 32 (2021), 1389-1397. https://doi.org/10.1007/s13370-021-00906-5 | es_ES |
dc.description.references | S. Singh, and Lj. Kočinac, Star versions of Hurewicz spaces, Hacet. J. Math. Stat. 50, no. 5 (2021), 1325-1333. https://doi.org/10.15672/hujms.819719 | es_ES |
dc.description.references | Y. K. Song, Remarks on strongly star-Menger spaces, Comment. Math. Univ. Carolinae 54, no. 1 (2013), 97-104. | es_ES |