- -

On graph induced symbolic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On graph induced symbolic systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kumar, Prashant es_ES
dc.contributor.author Sharma, Puneet es_ES
dc.date.accessioned 2023-11-15T08:33:36Z
dc.date.available 2023-11-15T08:33:36Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199730
dc.description.abstract [EN] In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion. es_ES
dc.description.sponsorship The first author thanks MHRD, Govt. of India and the second author thanks SERB Grant No. MTR/2019/000333 for the financial support. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multidimensional shift spaces es_ES
dc.subject Shifts of finite type es_ES
dc.subject Periodicity in multidimensional shifts of finite type es_ES
dc.title On graph induced symbolic systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.16662
dc.relation.projectID info:eu-repo/grantAgreement/SERB//MTR%2F2019%2F000333 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kumar, P.; Sharma, P. (2023). On graph induced symbolic systems. Applied General Topology. 24(2):359-378. https://doi.org/10.4995/agt.2023.16662 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.16662 es_ES
dc.description.upvformatpinicio 359 es_ES
dc.description.upvformatpfin 378 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16662 es_ES
dc.contributor.funder Science and Engineering Research Board, India es_ES
dc.contributor.funder Ministry of Education, India es_ES
dc.description.references A. Ballier, B. Durand, and E. Jeandel, Structural aspects of tilings, Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science, STACS 2008. es_ES
dc.description.references R. Berger, The undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66 (1966). https://doi.org/10.1090/memo/0066 es_ES
dc.description.references E. M. Coven, A. S. A. Johnson, N. Jonoska, and K. Madden, The symbolic dynamics of multidimensional tiling systems, Ergodic Theory And Dynamical Systems 23, no. 2 (2003), 447-460. https://doi.org/10.1017/S014338570200113X es_ES
dc.description.references X.-C. Fu, W. Lu, P. Ashwin, and J. Duan, Symbolic representations of iterated maps, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 18 (2001), 119-147. https://doi.org/10.12775/TMNA.2001.027 es_ES
dc.description.references M. Hochman, and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics 171, no. 3 (2010), 2011-2038. https://doi.org/10.4007/annals.2010.171.2011 es_ES
dc.description.references E. Jeandel and P. Vanier, Characterizations of periods of multi-dimensional shifts, Ergodic Theory and Dynamical Systems 35, no. 2 (2013), 431-460. https://doi.org/10.1017/etds.2013.60 es_ES
dc.description.references A. S. A. Johnson, and K. M. Madden, The decomposition theorem for two-dimensional shifts of finite type, Proceedings of the American Mathematical Society 127, no. 5 (1999), 1533-1543. https://doi.org/10.1090/S0002-9939-99-04678-X es_ES
dc.description.references N. Jonoska and J. B. Pirnot, Finite state automata representing two-dimensional subshifts, Theoretical Computer Science 410, no. 37 (2009), 3504--3512. https://doi.org/10.1016/j.tcs.2009.03.015 es_ES
dc.description.references B. P. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-642-58822-8_7 es_ES
dc.description.references S. Lightwood, Morphisms from non-periodic $Z^2$-subshifts I: Constructing embeddings from homomorphisms, Ergodic Theory Dynam. Systems 23, no. 2 (2003), 587-609. https://doi.org/10.1017/S014338570200130X es_ES
dc.description.references D. Lind, and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302 es_ES
dc.description.references D. Lind, and K. Schmidt, Symbolic and algebraic dynamical systems, Handbook of Dynamical Systems, Elsevier Science, Volume 1, Part A (2002), 765-812. https://doi.org/10.1016/S1874-575X(02)80012-1 es_ES
dc.description.references A. Quas, and P. Trow, Subshifts of Multidimensional shifts of finite type, Ergodic Theory and Dynamical Systems 20, no. 3 (2000), 859-874. https://doi.org/10.1017/S0143385700000468 es_ES
dc.description.references C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x es_ES
dc.description.references P. Sharma and D. Kumar, Matrix characterization of multidimensional subshifts of finite type, Applied General Topology 20, no. 2 (2019), 407-418. https://doi.org/10.4995/agt.2019.11541 es_ES
dc.description.references P. Sharma and D. Kumar, Multidimensional shifts and finite matrices, Topology Proceedings 57 (2021), 241-257. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem