Mostrar el registro sencillo del ítem
dc.contributor.author | García-Pacheco, Francisco Javier | es_ES |
dc.contributor.author | Miralles, Alejandro | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.date.accessioned | 2023-11-15T19:01:18Z | |
dc.date.available | 2023-11-15T19:01:18Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199838 | |
dc.description.abstract | [EN] Every element in the boundary of the group of invertibles of a Banach algebra is a topological zero divisor. We extend this result to the scope of topological rings. In particular, we define a new class of semi-normed rings, called almost absolutely semi-normed rings, which strictly includes the class of absolutely semi-valued rings, and prove that every element in the boundary of the group of invertibles of a complete almost absolutely semi-normed ring is a topological zero divisor. To achieve all these, we have to previously entail an exhaustive study of topological divisors of zero in topological rings. In addition, it is also well known that the group of invertibles is open and the inversion map is continuous and C-differentiable in a Banach algebra. We also extend these results to the setting of complete normed rings. Finally, this study allows us to generalize the point, continuous and residual spectra to the scope of Banach algebras. | es_ES |
dc.description.sponsorship | The authors would like to thank the reviewers for their valuable comments and remarks which have contributed to improve the presentation and quality of the manuscript. The first author has been supported by Research Grant PGC-101514-B-I00 awarded by the Ministry of Science, Innovation and Universities of Spain, and by the 2014-2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia with Project reference: FEDER-UCA18-105867 and Ministerio de Educacion y Ciencia (Grant number MTM2016-75963-P). The second author has been supported by Project PGC2018-094431-B-100 (MICINN. Spain) and Project 8059/2019 (Universitat Jaume I). The third author is supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEU/2021/070. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Spectrum | es_ES |
dc.subject | Rings | es_ES |
dc.subject | Algebras | es_ES |
dc.subject | Zero divisor | es_ES |
dc.subject | Invertibles | es_ES |
dc.subject | Operator | es_ES |
dc.title | Invertibles in topological rings: a new approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-021-01183-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2021%2F070//Análisis funcional, dinámica de operadores y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//FEDER-UCA18-105867/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//MTM2016-75963-P//Dinámica de operadores/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//PGC-101514-B-I00/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//8059%2F2019/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García-Pacheco, FJ.; Miralles, A.; Murillo Arcila, M. (2022). Invertibles in topological rings: a new approach. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 116(1):1-17. https://doi.org/10.1007/s13398-021-01183-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01183-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\455733 | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Dales, H.G., Feinstein, J.F.: Banach function algebras with dense invertible groups. Proc. Am. Math. Soc. 136(4), 1295–1304 (2008) | es_ES |
dc.description.references | Kulkarni, S.H.: The group of invertible elements of a real Banach algebra. Houston J. Math. 40(3), 833–836 (2014) | es_ES |
dc.description.references | Robertson, G.: On the density of the invertible group in $$C^*$$-algebras. Proc. Edinb. Math. Soc. 20(2), 153–157 (1976) | es_ES |
dc.description.references | Bhatt, S.J., Dedania, H.V.: Banach algebras in which every element is a topological zero divisor. Proc. Am. Math. Soc. 123(3), 735–737 (1995) | es_ES |
dc.description.references | Marcos, J.C., Palacios, A.R., Velasco, M.V.: A note on topological divisors of zero and division algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109(1), 93–100 (2015) | es_ES |
dc.description.references | Żelazko, W.: On generalized topological divisors of zero. Stud. Math. 85(2), 137–148 (1987) | es_ES |
dc.description.references | García, M.C., Rodríguez Palacios, A.: Non-associative normed algebras. Vol. 1. The Vidav-Palmer and Gelfand-Naimark theorems. In: Encyclopedia of Mathematics and its Applications, vol. 154. Cambridge University Press, Cambridge (2014) | es_ES |
dc.description.references | Müller, V.: Spectral theory of linear operators and spectral systems in Banach algebras. In: Operator Theory: Advances and Applications, vol. 139. Birkhäuser Verlag AG, Basel (2007) | es_ES |
dc.description.references | Roch, S., Santos, P.A., Silbermann, B.: Non-commutative Gelfand Theories: A Tool-kit for Operator Theorists and Numerical Analysts. Springer, London (2011) | es_ES |
dc.description.references | Dummit, D.S., Foote, R.M.: Abstract algebra, 3rd edn. Wiley, Hoboken (2004) | es_ES |
dc.description.references | Edwards, R.E.: Functional Analysis: Theory and Applications. Dover Publications Inc, New York (1995).. (Corrected reprint of the 1965 original) | es_ES |
dc.description.references | Gamelin, T.W.: Uniform algebras, 2nd edn. Chelsea Publishing Company, New York (1984) | es_ES |
dc.description.references | Harte, R.: Invertibility and Singularity for Bounded Linear Operators: Monographs and Textbooks in Pure and Applied Mathematics, vol. 109. Marcel Dekker Inc, New York (1988) | es_ES |
dc.description.references | Kato, T.: Perturbation Theory for Linear Operators: Classics in Mathematics. Springer, Berlin (1995).. (Reprint of the 1980 edition) | es_ES |
dc.description.references | Mathieu, M.: Spectral isometries. In: Topological Algebras, Their Applications, and Related Topics, vol. 67, pp. 265–269. Banach Center Publications, Warsaw (2005) | es_ES |
dc.description.references | Waelbroeck, L.: Topological Vector Spaces and A: Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971) | es_ES |
dc.description.references | Warner, S.: Topological Fields. Elsevier Science Publishers B.V., Amsterdam (1989) | es_ES |
dc.description.references | Warner, S.: Topological rings: North-Holland Mathematics Studies, vol. 178. North-Holland Publishing Co., Amsterdam (1993) | es_ES |
dc.description.references | García-Pacheco, F.J., Sáez-Martínez, S.: Normalizing rings. Banach J. Math. Anal. 14(3), 1143–1176 (2020) | es_ES |
dc.description.references | Berberian, S.K., Halmos, P.R.: Lectures in Functional Analysis and Operator Theory. Springer, New York (1974) | es_ES |
dc.description.references | Megginson, R.E.: An introduction to Banach space theory. In: Graduate Texts in Mathematics, vol. 183. Springer, New York (1998) | es_ES |
dc.description.references | García-Pacheco, F.J.: Regularity in topological modules. Mathematics 8(9), 1580 (2020) | es_ES |
dc.description.references | García-Pacheco, F.J., Piniella, P.: Unit neighborhoods in topological rings. Banach J. Math. Anal. 9(4), 234–242 (2015) | es_ES |
dc.description.references | García-Pacheco, F.J., Piniella, P.: Linear topologies and sequential compactness in topological modules. Quaest. Math. 40(7), 897–908 (2017) | es_ES |
dc.description.references | García-Pacheco, F.J., Piniella, P.: Geometry of balanced and absorbing subsets of topological modules. J. Algebra Appl. 18(6), 13 (2019) | es_ES |