- -

Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Urrios, Daniel es_ES
dc.contributor.author Arregui, Guillermo es_ES
dc.contributor.author Colombano, Martín F. es_ES
dc.contributor.author Jaramillo-Fernández, Juliana es_ES
dc.contributor.author Pitanti, Alessandro es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Mercadé, Laura es_ES
dc.contributor.author Martínez, Alejandro es_ES
dc.contributor.author Capuj, Néstor E. es_ES
dc.date.accessioned 2023-11-16T19:02:02Z
dc.date.available 2023-11-16T19:02:02Z
dc.date.issued 2022-12-17 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199903
dc.description.abstract [EN] Locking of oscillators to ultra-stable external sources is of paramount importance for improving close-to-carrier phase noise in free running oscillators. In most of them, such as Micro-Electro-Mechanical-Systems or LC circuit-based oscillators, the locking frequency range is limited by the robustness of their natural frequency, which comes explicitly related with intrinsic parameters of the system. In this work we report the synchronization of an optically-driven self-pulsing limit-cycle taking place in a silicon optomechanical crystal cavity to an external harmonic signal that modulates the driving laser. Because of the extreme ductility of the natural self-pulsing frequency (several tens of MHz), the injection-locking mechanism is highly efficient and displays giant relative bandwidths exceeding 60%. The external modulation reveals itself as a knob to explore dynamical attractors that are otherwise elusive and, in particular, as a means to initialize a mechanical resonator into a state of self-sustained oscillations driven by radiation pressure forces. Moreover, we exploit the large anharmonicity of the studied limit-cycle to induce injection-locking to integer multiples and fractions of the frequency of the external reference, which can be used for frequency conversion purposes in nano-electro-opto-mechanical systems. es_ES
dc.description.sponsorship This work was supported by the MICINN project ALLEGRO (PID2021-124618NB-C21 and PID2021-124618NB-C22). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Communications Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s42005-022-01113-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-124618NB-C21//HACIA SENSADO Y PROCESADO DE SEÑAL TODO ÓPTICO USANDO OPTOMECÁNICA DE CAVIDADES Y MOLECULAR: DESDE PEINES OPTOMECÁNICOS A ESPECTROSCOPIA RAMAN EN CHIPS DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PID2021-124618NB-C22//ALLEGRO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Navarro-Urrios, D.; Arregui, G.; Colombano, MF.; Jaramillo-Fernández, J.; Pitanti, A.; Griol Barres, A.; Mercadé, L.... (2022). Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity. Communications Physics. 5(1):1-12. https://doi.org/10.1038/s42005-022-01113-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s42005-022-01113-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2399-3650 es_ES
dc.relation.pasarela S\481048 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Pikovsky, A., Kurths, J., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, 2003). es_ES
dc.description.references Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. Synchronization: from simple to complex (Springer Science & Business Media, 2008). es_ES
dc.description.references Adler, R. A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973). es_ES
dc.description.references Kurokawa, K. Injection locking of microwave solid-state oscillators. Proc. IEEE 61, 1386–1410 (1973). es_ES
dc.description.references Paciorek, L. J. Injection locking of oscillators. Proc. IEEE 53, 1723–1727 (1965). es_ES
dc.description.references Stover, H. L. Theoretical explanation for the output spectra of unlocked driven oscillators. Proc. IEEE 54, 310–311 (1966). es_ES
dc.description.references Armand, M. On the output spectrum of unlocked driven oscillators. Proc. IEEE 57, 798–799 (1969). es_ES
dc.description.references Hossain, M. & Carusone, A. C. CMOS oscillators for clock distribution and injection-locked deskew. IEEE J. Solid-State Circuits 44, 2138–2153 (2009). es_ES
dc.description.references Shekhar, S. et al. Strong injection locking in low-Q LC oscillators: modeling and application in a forwarded-clock I/O receiver. IEEE Trans. Circuits Syst. I: Regul. Pap. 56, 1818–1829 (2009). es_ES
dc.description.references Rategh, H. R. & Lee, T. H. Superharmonic injection-locked frequency dividers. IEEE J. Solid-State Circuits 34, 813–821 (1999). es_ES
dc.description.references Imani, A. & Hashemi, H. Distributed injection-locked frequency dividers. IEEE J. Solid-State Circuits 52, 2083–2093 (2017). es_ES
dc.description.references Baker, C. et al. Optical instability and self-pulsing in silicon nitride whispering gallery resonators. Opt. Express 20, 29076–29089 (2012). es_ES
dc.description.references Soltani, M., Yegnanarayanan, S., Li, Q., Eftekhar, A. A. & Adibi, A. Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators. Phys. Rev. A (Coll. Park) 85, 53819 (2012). es_ES
dc.description.references Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006). es_ES
dc.description.references Fomin, A. E., Gorodetsky, M. L., Grudinin, I. S. & Ilchenko, V. S. Nonstationary nonlinear effects in optical microspheres. JOSA B 22, 459–465 (2005). es_ES
dc.description.references Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5 (2015). es_ES
dc.description.references Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18 (2016). es_ES
dc.description.references Razavi, B. A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39, 1415–1424 (2004). es_ES
dc.description.references Arregui, G. et al. Injection locking in an optomechanical coherent phonon source. Nanophotonics 10, 1319–1327 (2021). es_ES
dc.description.references Amitai, E., Lörch, N., Nunnenkamp, A., Walter, S. & Bruder, C. Synchronization of an optomechanical system to an external drive. Phys. Rev. A (Coll. Park) 95, 53858 (2017). es_ES
dc.description.references Hossein-Zadeh, M. & Vahala, K. J. Observation of injection locking in an optomechanical rf oscillator. Appl. Phys. Lett. 93, 191115 (2008). es_ES
dc.description.references Gomis-Bresco, J. et al. A A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014). es_ES
dc.description.references Pitanti, A. et al. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Opt. Express 23, 3196–3208 (2015). es_ES
dc.description.references Andronov, A. A. & Vitt, S. E. K. Theory of Oscillations (Pergamon, 1966). es_ES
dc.description.references Bekker, C., Kalra, R., Baker, C. & Bowen, W. P. Injection locking of an electro-optomechanical device. Optica 4, 1196–1204 (2017). es_ES
dc.description.references Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021). es_ES
dc.description.references Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 66611 (2002). es_ES
dc.description.references Mercadé, L. et al. Testing optomechanical microwave oscillators for SATCOM application. J. Lightwave Technol. 40, 4539–4547 (2022). es_ES
dc.description.references Mercadé, L., Morant, M., Griol, A., Llorente, R. & Martínez, A. Photonic frequency conversion of OFDM microwave signals in a wavelength-scale optomechanical cavity. Laser Photon Rev. 15, 2100175 (2021). es_ES
dc.description.references Amann, A., Mortell, M. P., O’Reilly, E. P., Quinlan, M. & Rachinskii, D. Mechanism of synchronization in frequency dividers. IEEE Trans. Circuits Syst. I: Regul. Pap. 56, 190–199 (2009). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem