- -

Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity

Mostrar el registro completo del ítem

Navarro-Urrios, D.; Arregui, G.; Colombano, MF.; Jaramillo-Fernández, J.; Pitanti, A.; Griol Barres, A.; Mercadé, L.... (2022). Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity. Communications Physics. 5(1):1-12. https://doi.org/10.1038/s42005-022-01113-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199903

Ficheros en el ítem

Metadatos del ítem

Título: Giant injection-locking bandwidth of a self-pulsing limit-cycle in an optomechanical cavity
Autor: Navarro-Urrios, Daniel Arregui, Guillermo Colombano, Martín F. Jaramillo-Fernández, Juliana Pitanti, Alessandro Griol Barres, Amadeu Mercadé, Laura Martínez, Alejandro Capuj, Néstor E.
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Fecha difusión:
Resumen:
[EN] Locking of oscillators to ultra-stable external sources is of paramount importance for improving close-to-carrier phase noise in free running oscillators. In most of them, such as Micro-Electro-Mechanical-Systems or ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Communications Physics. (eissn: 2399-3650 )
DOI: 10.1038/s42005-022-01113-9
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s42005-022-01113-9
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//PID2021-124618NB-C21//HACIA SENSADO Y PROCESADO DE SEÑAL TODO ÓPTICO USANDO OPTOMECÁNICA DE CAVIDADES Y MOLECULAR: DESDE PEINES OPTOMECÁNICOS A ESPECTROSCOPIA RAMAN EN CHIPS DE SILICIO/
info:eu-repo/grantAgreement/MICINN//PID2021-124618NB-C22//ALLEGRO/
Agradecimientos:
This work was supported by the MICINN project ALLEGRO (PID2021-124618NB-C21 and PID2021-124618NB-C22).
Tipo: Artículo

References

Pikovsky, A., Kurths, J., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, 2003).

Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. Synchronization: from simple to complex (Springer Science & Business Media, 2008).

Adler, R. A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973). [+]
Pikovsky, A., Kurths, J., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, 2003).

Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. Synchronization: from simple to complex (Springer Science & Business Media, 2008).

Adler, R. A study of locking phenomena in oscillators. Proc. IEEE 61, 1380–1385 (1973).

Kurokawa, K. Injection locking of microwave solid-state oscillators. Proc. IEEE 61, 1386–1410 (1973).

Paciorek, L. J. Injection locking of oscillators. Proc. IEEE 53, 1723–1727 (1965).

Stover, H. L. Theoretical explanation for the output spectra of unlocked driven oscillators. Proc. IEEE 54, 310–311 (1966).

Armand, M. On the output spectrum of unlocked driven oscillators. Proc. IEEE 57, 798–799 (1969).

Hossain, M. & Carusone, A. C. CMOS oscillators for clock distribution and injection-locked deskew. IEEE J. Solid-State Circuits 44, 2138–2153 (2009).

Shekhar, S. et al. Strong injection locking in low-Q LC oscillators: modeling and application in a forwarded-clock I/O receiver. IEEE Trans. Circuits Syst. I: Regul. Pap. 56, 1818–1829 (2009).

Rategh, H. R. & Lee, T. H. Superharmonic injection-locked frequency dividers. IEEE J. Solid-State Circuits 34, 813–821 (1999).

Imani, A. & Hashemi, H. Distributed injection-locked frequency dividers. IEEE J. Solid-State Circuits 52, 2083–2093 (2017).

Baker, C. et al. Optical instability and self-pulsing in silicon nitride whispering gallery resonators. Opt. Express 20, 29076–29089 (2012).

Soltani, M., Yegnanarayanan, S., Li, Q., Eftekhar, A. A. & Adibi, A. Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators. Phys. Rev. A (Coll. Park) 85, 53819 (2012).

Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).

Fomin, A. E., Gorodetsky, M. L., Grudinin, I. S. & Ilchenko, V. S. Nonstationary nonlinear effects in optical microspheres. JOSA B 22, 459–465 (2005).

Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5 (2015).

Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18 (2016).

Razavi, B. A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39, 1415–1424 (2004).

Arregui, G. et al. Injection locking in an optomechanical coherent phonon source. Nanophotonics 10, 1319–1327 (2021).

Amitai, E., Lörch, N., Nunnenkamp, A., Walter, S. & Bruder, C. Synchronization of an optomechanical system to an external drive. Phys. Rev. A (Coll. Park) 95, 53858 (2017).

Hossein-Zadeh, M. & Vahala, K. J. Observation of injection locking in an optomechanical rf oscillator. Appl. Phys. Lett. 93, 191115 (2008).

Gomis-Bresco, J. et al. A A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).

Pitanti, A. et al. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Opt. Express 23, 3196–3208 (2015).

Andronov, A. A. & Vitt, S. E. K. Theory of Oscillations (Pergamon, 1966).

Bekker, C., Kalra, R., Baker, C. & Bowen, W. P. Injection locking of an electro-optomechanical device. Optica 4, 1196–1204 (2017).

Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021).

Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 66611 (2002).

Mercadé, L. et al. Testing optomechanical microwave oscillators for SATCOM application. J. Lightwave Technol. 40, 4539–4547 (2022).

Mercadé, L., Morant, M., Griol, A., Llorente, R. & Martínez, A. Photonic frequency conversion of OFDM microwave signals in a wavelength-scale optomechanical cavity. Laser Photon Rev. 15, 2100175 (2021).

Amann, A., Mortell, M. P., O’Reilly, E. P., Quinlan, M. & Rachinskii, D. Mechanism of synchronization in frequency dividers. IEEE Trans. Circuits Syst. I: Regul. Pap. 56, 190–199 (2009).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem