- -

Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes

Show full item record

Yousfi, S.; Marin, J.; Parra, L.; Lloret, J.; Mauri, PV. (2022). Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes. Agricultural Water Management. 266:1-11. https://doi.org/10.1016/j.agwat.2022.107581

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200349

Files in this item

Item Metadata

Title: Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes
Author: Yousfi, Salima Marin, José Parra, Lorena Lloret, Jaime Mauri, Pedro V.
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Issued date:
Abstract:
[EN] Turfgrass phenotyping is a potential tool in different grass program breeding. The traditional methods for turfgrass drought phenotyping in field are time-consuming and labor-intensive. However, remote sensing techniques ...[+]
Subjects: Remote sensing , NDVI , RGB images , Canopy temperature , Water deficit , Turfgrass
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Agricultural Water Management. (issn: 0378-3774 )
DOI: 10.1016/j.agwat.2022.107581
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.agwat.2022.107581
Project ID:
info:eu-repo/grantAgreement/CAM//PDR18-XEROCESPED/
Thanks:
Projects GO-PDR18-XEROCESPED funded by the European Agricultural Fund for Rural Development (EAFRD) and IMIDRA and the AREA VERDE-MG projects are acknowledged.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record