- -

Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yousfi, Salima es_ES
dc.contributor.author Marin, José es_ES
dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Mauri, Pedro V. es_ES
dc.date.accessioned 2023-11-29T19:01:31Z
dc.date.available 2023-11-29T19:01:31Z
dc.date.issued 2022-05-31 es_ES
dc.identifier.issn 0378-3774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200349
dc.description.abstract [EN] Turfgrass phenotyping is a potential tool in different grass program breeding. The traditional methods for turfgrass drought phenotyping in field are time-consuming and labor-intensive. However, remote sensing techniques emerge as effective, rapid and easy approaches to optimize turfgrass selection under water stress. Remote sensing approaches are considerate as important strategies to select species of turfgrass tolerable to drought allowing green space sustainability and environment protection in regions with water limitation. Here we evaluated differences between six mixtures of C-3-C-4 turfgrass grown under two water regimes (limited and high irrigation). The performance of turf species was achieved using the green area (GA) vegetation index calculated from RGB (red green, blue) images obtained by ground camera and drone imagery, the normalized difference vegetation index (NDVI), the plant canopy temperature (CT) and soil moisture content (SM). Both vegetation (GA and NDVI) and water status (CT and SM) indices presented a significant difference in turfgrass growth under the two water regimes. Differences among turfgrass species were detected under limited and high irrigation using the vegetation indices. Both NDVI and GA allowed clear separation between drought-tolerant and susceptible turf grass, as well as the identification of the mixtures with a rapid green regeneration after a period of limited irrigation. Moreover, the canopy temperature also discriminated between turfgrass species but only under limited irrigation, while soil moisture values did not differentiate between species. Furthermore, the regression and conceptual model using remote sensing parameters revealed the most adequate criteria to detect turfgrass variability under each growing condition. This study also highlights the usefulness of green area vegetation index derived from drone imagery. GA obtained by drone images in this study explained turfgrass variability better than that derived from ground RGB images or the NDVI. es_ES
dc.description.sponsorship Projects GO-PDR18-XEROCESPED funded by the European Agricultural Fund for Rural Development (EAFRD) and IMIDRA and the AREA VERDE-MG projects are acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Agricultural Water Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Remote sensing es_ES
dc.subject NDVI es_ES
dc.subject RGB images es_ES
dc.subject Canopy temperature es_ES
dc.subject Water deficit es_ES
dc.subject Turfgrass es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.agwat.2022.107581 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//PDR18-XEROCESPED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Yousfi, S.; Marin, J.; Parra, L.; Lloret, J.; Mauri, PV. (2022). Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes. Agricultural Water Management. 266:1-11. https://doi.org/10.1016/j.agwat.2022.107581 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.agwat.2022.107581 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 266 es_ES
dc.relation.pasarela S\491772 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder European Agricultural Fund for Rural Development es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem