Resumen:
|
[ES] La cátedra de accionamientos de Energía Eólica investiga el comportamiento de los trenes de accionamiento de las modernas multimegaváticas turbinas eólicas (WT, en inglés Wind Turbines). Los objetivos de la investigación ...[+]
[ES] La cátedra de accionamientos de Energía Eólica investiga el comportamiento de los trenes de accionamiento de las modernas multimegaváticas turbinas eólicas (WT, en inglés Wind Turbines). Los objetivos de la investigación son aumentar la disponibilidad, la robustez y la eficiencia energética de los aerogeneradores y reducir el coste nivelado de la electricidad. Para ello, se utilizan combinadamente herramientas de desarrollo de software y plataformas de pruebas de sistemas modernos.
Las turbinas eólicas (WT) actuales utilizan exclusivamente rodamientos de rodillos como cojinetes principales. Sin embargo, cuando ocurren daños, estos generan altos costes de reparación. Por este motivo, se está investigando el uso de cojinetes lisos como cojinete principal de los aerogeneradores. Entre otras cosas, estos permiten el reemplazo de segmentos de rodamientos individuales, lo que reduce significativamente los costes de reparación en caso de daños. Por lo tanto, en el CWD (Center for Wind Power Drives), se desarrollará una unidad de cojinete principal con cojinetes lisos en una escala relevante (5 MW).
Por lo tanto, el objetivo de este trabajo es investigar unidades de cojinetes principales con cojinetes lisos mediante simulaciones EHD. Se deben simular diferentes geometrías de rodamientos y examinar su idoneidad.
[-]
[EN] Wind power has emerged as a significant and rapidly growing source of renewable energy
worldwide. As the demand for clean and sustainable energy continues to increase, the efficient and
reliable operation of wind ...[+]
[EN] Wind power has emerged as a significant and rapidly growing source of renewable energy
worldwide. As the demand for clean and sustainable energy continues to increase, the efficient and
reliable operation of wind turbines becomes paramount. However, one critical component that often
experiences premature failure is the main bearing of wind turbines, which can have failure rates of
up to 30%. The high repair costs associated with roller bearings used in wind turbine main bearings
pose a significant challenge for the wind energy industry. These costs not only include the actual
repair expenses but also the downtime required for the repairs, which can lead to substantial financial
losses. It is imperative to explore alternative solutions that can minimize repair costs and reduce
downtime.
One potential solution that has gained attention is the use of segmented plain bearings, such as the
innovative FlexPad design. The FlexPad design offers the advantage of easy exchangeability of its
sliding segments, allowing for on-tower repair without the need to dismount the entire rotor. This
convenience can potentially save significant time and resources. However, during the transfer of the
FlexPad design to wind turbines with power ratings exceeding 5 MW, a challenge surfaced. The
larger turbines needed stiffer sliding segments in order to handle the increased loads and forces
generated by the larger size of the turbines. This would result in thicker sliding segments and an
increase in weight, presenting a new obstacle to easy serviceability and restricts one of the key
advantages of plain bearings.
Therefore, in order to address this issue and maintain the convenience and efficiency offered by the
FlexPad design, it is crucial to explore and understand the influence of sliding segment design on
the hydrodynamic load bearing capacity. To achieve this objective, a simulative investigation using
elastohydrodynamic (EHD) simulations was employed to explore various bearing geometries and
assess their performance. This research will specifically focus on studying the relationship between
sliding segment design, its deformation under load, and the resulting hydrodynamic pressure build up. By comprehensively analyzing these factors, it will be possible to ascertain whether segment
weight can be minimized without compromising the overall performance of the bearing.
In conclusion, the findings of this study will contribute valuable insights into the optimization of the
FlexPad bearing design for wind turbines. The ultimate goal is to gain deeper insights into the
FlexPads sliding segment design and its relationship to the FlexPad’s hydrodynamic performance
[-]
|