- -

A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli

Show full item record

Juan, M.; Mendez-Lopez, M.; Fidalgo, C.; Mollá, R.; Vivó, R.; Paramo, D. (2022). A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli. Journal on Multimodal User Interfaces. 16(3):319-333. https://doi.org/10.1007/s12193-022-00392-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200774

Files in this item

Item Metadata

Title: A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli
Author: Juan, M.-Carmen Mendez-Lopez, Magdalena Fidalgo, Camino Mollá, Ramón Vivó, Roberto Paramo, David
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Issued date:
Abstract:
[EN] A SLAM-based Augmented Reality (AR) app has been designed, developed, and validated to assess spatial short-term memory. Our app can be used with visual and auditory stimuli and can run on mobile devices. It can be ...[+]
Subjects: Augmented reality , SLAM , Spatial memory , Auditory stimuli , Visual stimuli , Assessment
Copyrigths: Reserva de todos los derechos
Source:
Journal on Multimodal User Interfaces. (issn: 1783-7677 )
DOI: 10.1007/s12193-022-00392-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s12193-022-00392-4
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-87044-R/ES/REALIDAD AUMENTADA A TRAVES DE VARIOS CANALES SENSORIALES. APLICACION A PROCESOS DE ORIENTACION Y LOCALIZACION ESPACIAL/
info:eu-repo/grantAgreement/Gobierno de Aragón//S31_20D/
Thanks:
We would like to thank all of the people who participated in the study. We would like to thank the editor and reviewers for their valuable suggestions. This work was funded mainly by MCIN/AEI/10.13039/501100011033/ and by ...[+]
Type: Artículo

References

Baddeley A (1992) Working memory. Science (80-) 255:556–559. https://doi.org/10.1126/science.1736359

Torsten Schmidt T, Blankenburg F (2018) Brain regions that retain the spatial layout of tactile stimuli during working memory—a ‘tactospatial sketchpad’? Neuroimage 178:531–539

Burgess N, Becker S, King JA, O’Keefe J (2001) Memory for events and their spatial context: models and experiments. Philos Trans R Soc B Biol Sci 356:1493–1503. https://doi.org/10.1098/rstb.2001.0948 [+]
Baddeley A (1992) Working memory. Science (80-) 255:556–559. https://doi.org/10.1126/science.1736359

Torsten Schmidt T, Blankenburg F (2018) Brain regions that retain the spatial layout of tactile stimuli during working memory—a ‘tactospatial sketchpad’? Neuroimage 178:531–539

Burgess N, Becker S, King JA, O’Keefe J (2001) Memory for events and their spatial context: models and experiments. Philos Trans R Soc B Biol Sci 356:1493–1503. https://doi.org/10.1098/rstb.2001.0948

Neguţ A, Matu SA, Sava FA, David D (2016) Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: a meta-analytic approach. Comput Human Behav 54:414–424. https://doi.org/10.1016/j.chb.2015.08.029

Doniger GM, Beeri MS, Bahar-Fuchs A et al (2018) Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer’s disease risk: a randomized controlled trial. Alzheimer’s Dement Transl Res Clin Interv 4:118–129. https://doi.org/10.1016/j.trci.2018.02.005

van der Kuil MNA, Visser-Meily JMA, Evers AWM, van der Ham IJM (2018) A usability study of a serious game in cognitive rehabilitation: A compensatory navigation training in acquired brain injury patients. Front Psychol 9:846. https://doi.org/10.3389/fpsyg.2018.00846

Barrett AM, Muzaffar T (2014) Spatial cognitive rehabilitation and motor recovery after stroke. Curr Opin Neurol 27:653–658. https://doi.org/10.1097/WCO.0000000000000148

van der Ham IJM, Claessen MHG (2020) How age relates to spatial navigation performance: functional and methodological considerations. Ageing Res Rev 58:101020. https://doi.org/10.1016/j.arr.2020.101020

Cullen KE, Taube JS (2017) Our sense of direction: progress, controversies and challenges. Nat Neurosci 20:1465–1473. https://doi.org/10.1038/nn.4658

Ruddle RA, Lessels S (2009) The benefits of using a walking interface to navigate virtual environments. ACM Trans Comput Interact 16:5. https://doi.org/10.1145/1502800.1502805

Bigelow J, Poremba A (2014) Achilles’ Ear? Inferior human short-term and recognition memory in the auditory modality. PLoS One 9:e89914. https://doi.org/10.1371/journal.pone.0089914

Gloede ME, Gregg MK (2019) The fidelity of visual and auditory memory. Psychon Bull Rev 26:1325–1332. https://doi.org/10.3758/s13423-019-01597-7

Langlois J, Bellemare C, Toulouse J, Wells GA (2015) Spatial abilities and technical skills performance in health care: a systematic review. Med Educ 49:1065–1085. https://doi.org/10.1111/medu.12786

Mitolo M, Gardini S, Caffarra P et al (2015) Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: a study in older adults. Cogn Process 16:165–176. https://doi.org/10.1007/s10339-015-0647-3

Juan M-C, Mendez-Lopez M, Perez-Hernandez E, Albiol-Perez S (2014) Augmented reality for the assessment of children’s spatial memory in real settings. PLoS One 9:e113751. https://doi.org/10.1371/journal.pone.0113751

Picucci L, Caffò AO, Bosco A (2011) Besides navigation accuracy: gender differences in strategy selection and level of spatial confidence. J Environ Psychol 31:430–438. https://doi.org/10.1016/j.jenvp.2011.01.005

Walkowiak S, Foulsham T, Eardley AF (2015) Individual differences and personality correlates of navigational performance in the virtual route learning task. Comput Human Behav 45:402–410. https://doi.org/10.1016/j.chb.2014.12.041

Loachamín M, Juan M-C, Mendez-Lopez M et al (2019) Developing and evaluating a game for the assessment of spatial memory using auditory stimuli. IEEE Lat Am Trans 13:1653–1661. https://doi.org/10.1109/TLA.2019.8986443

Bohil CJ, Alicea B, Biocca FA (2011) Virtual reality in neuroscience research and therapy. Nat Rev Neurosci 12:752–762. https://doi.org/10.1038/nrn3122

Fabroyir H, Teng WC (2018) Navigation in virtual environments using head-mounted displays: allocentric vs. egocentric behaviors. Comput Human Behav 80:331–343. https://doi.org/10.1016/j.chb.2017.11.033

León I, Tascón L, Cimadevilla JM (2016) Age and gender-related differences in a spatial memory task in humans. Behav Brain Res 306:8–12. https://doi.org/10.1016/j.bbr.2016.03.008

Münzer S, Zadeh MV (2016) Acquisition of spatial knowledge through self-directed interaction with a virtual model of a multi-level building: effects of training and individual differences. Comput Human Behav 64:191–205. https://doi.org/10.1016/j.chb.2016.06.047

Cimadevilla JM, Lizana JR, Roldán MD et al (2014) Spatial memory alterations in children with epilepsy of genetic origin or unknown cause. Epileptic Disord 16:203–207. https://doi.org/10.1684/epd.2014.0661

Reggente N, Essoe JKY, Baek HY, Rissman J (2020) The method of loci in virtual reality: explicit binding of objects to spatial contexts enhances subsequent memory recall. J Cogn Enhanc 4:12–30. https://doi.org/10.1007/s41465-019-00141-8

Commins S, Duffin J, Chaves K et al (2019) NavWell: a simplified virtual-reality platform for spatial navigation and memory experiments. Behav Res Methods 52:1189–1207. https://doi.org/10.3758/s13428-019-01310-5

Cárdenas-Delgado S, Juan MC, Méndez-López M, Pérez-Hernández E (2017) Could people with stereo-deficiencies have a rich 3D experience using HMDs? In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Pp. 97–116

Cárdenas-Delgado S, Méndez-López M, Juan MC, et al (2017) Using a virtual maze task to assess spatial short-term memory in adults. In: VISIGRAPP 2017—Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. pp. 46–57

Rodríguez-Andrés D, Juan M-C, Méndez-López M et al (2016) MnemoCity task: assessment of childrens spatial memory using stereoscopy and virtual environments. PLoS One 11:e0161858. https://doi.org/10.1371/journal.pone.0161858

Rodriguez-Andres D, Mendez-Lopez M, Juan M-C, Perez-Hernandez E (2018) A virtual object-location task for children: gender and videogame experience influence navigation; age impacts memory and completion time. Front Psychol 9:451. https://doi.org/10.3389/fpsyg.2018.00451

Mendez-Lopez M, Perez-Hernandez E, Juan M-C (2016) Learning in the navigational space: age differences in a short-term memory for objects task. Learn Individ Differ 50:11–22. https://doi.org/10.1016/j.lindif.2016.06.028

Munoz-Montoya F, Juan M-C, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on SLAM to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627

Munoz-Montoya F, Fidalgo C, Juan M-C, Mendez-Lopez M (2019) Memory for object location in augmented reality: the role of gender and the relationship among spatial and anxiety outcomes. Front Hum Neurosci 13:113. https://doi.org/10.3389/fnhum.2019.00113

Keil J, Korte A, Ratmer A et al (2020) Augmented reality (AR) and spatial cognition: effects of holographic grids on distance estimation and location memory in a 3D indoor scenario. PFG J Photogramm Remote Sens Geoinf Sci 88:165–172. https://doi.org/10.1007/s41064-020-00104-1

Peleg-Adler R, Lanir J, Korman M (2018) The effects of aging on the use of handheld augmented reality in a route planning task. Comput Human Behav 81:52–62. https://doi.org/10.1016/j.chb.2017.12.003

Chu CH, Wang SL, Tseng BC (2017) Mobile navigation services with augmented reality. IEEJ Trans Electr Electron Eng 12:S95–S103. https://doi.org/10.1002/tee.22443

Rehman U, Cao S (2017) Augmented-reality-based indoor navigation: a comparative analysis of handheld devices versus google glass. IEEE Trans Human-Machine Syst 47:140–151. https://doi.org/10.1109/THMS.2016.2620106

Cattaneo Z, Bhatt E, Merabet LB et al (2008) The influence of reduced visual acuity on age-related decline in spatial working memory: an investigation. Aging Neuropsychol Cogn 15:687–702. https://doi.org/10.1080/13825580802036951

Papadopoulos K, Koustriava E (2011) The impact of vision in spatial coding. Res Dev Disabil 32:2084–2091. https://doi.org/10.1016/j.ridd.2011.07.041

Calle-Bustos A-M, Juan M-C, García-García I, Abad F (2017) An augmented reality game to support therapeutic education for children with diabetes. PLoS One 12:e0184645. https://doi.org/10.1371/journal.pone.0184645

Brooke J (1996) SUS-A quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland AL (eds) Usability evaluation in industry. Taylor & Francis, London

Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire. In: Proc 5th Annu Int Workshop Presence. Pp. 1–7

Slater M, Usoh M, Steed A (1994) Depth of presence in virtual environments. Presence Teleoperators Virtual Environ 3:130–144. https://doi.org/10.1162/pres.1994.3.2.130

Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686

Patrício M, Ferreira F, Oliveiros B, Caramelo F (2017) Comparing the performance of normality tests with ROC analysis and confidence intervals. Commun Stat Simul Comput 46:7535–7551. https://doi.org/10.1080/03610918.2016.1241410

Munoz-Montoya F, Juan MC, Mendez-Lopez M et al (2021) SLAM-based augmented reality for the assessment of short-Term spatial memory. A comparative study of visual versus tactile stimuli. PLoS One 16:1–30. https://doi.org/10.1371/journal.pone.0245976

Davis SW, Zhuang J, Wright P, Tyler LK (2014) Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia 63:107–115. https://doi.org/10.1016/j.neuropsychologia.2014.08.017

Koen JD, Borders AA, Petzold MT, Yonelinas AP (2017) Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus 27:184–193. https://doi.org/10.1002/hipo.22682

Hampstead BM, Stringer AY, Stilla RF et al (2011) Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia 49:2349–2361. https://doi.org/10.1016/j.neuropsychologia.2011.04.008

Dunn W (1997) The impact of sensory processing abilities on the daily lives of young children and their families: a conceptual model. Inf Young Child 9(4):23–35

Metz AE, Boling D, DeVore A et al (2019) Dunn’s model of sensory processing: an investigation of the axes of the four-quadrant model in healthy adults. Brain Sci 9:35. https://doi.org/10.3390/brainsci9020035

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record