- -

A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juan, M.-Carmen es_ES
dc.contributor.author Mendez-Lopez, Magdalena es_ES
dc.contributor.author Fidalgo, Camino es_ES
dc.contributor.author Mollá, Ramón es_ES
dc.contributor.author Vivó, Roberto es_ES
dc.contributor.author Paramo, David es_ES
dc.date.accessioned 2023-12-14T19:02:06Z
dc.date.available 2023-12-14T19:02:06Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 1783-7677 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200774
dc.description.abstract [EN] A SLAM-based Augmented Reality (AR) app has been designed, developed, and validated to assess spatial short-term memory. Our app can be used with visual and auditory stimuli and can run on mobile devices. It can be used in any indoor environment. The anchors and data of the app are persistently stored in the cloud. As an authoring tool, the type of stimulus, its number, and specific positions in the real environment can be customized for each session. A study involving 48 participants was carried out to analyze the performance outcomes comparing the location and remembering of stimuli in a real environment using visual versus auditory stimuli. The number of objects placed correctly was similar for the two different stimuli used. However, the group that used the auditory stimulus spent significantly more time completing the task and required significantly more attempts. The performance outcomes were independent of age and gender. For the auditory stimuli, correlations among all of the variables of the AR app and the variables of two other tasks (object-recall and map-pointing) were found. We also found that the greater the number of correctly placed auditory stimuli, the greater the perceived competence and the less mental effort required. The greater the number of errors, the less the perceived competence. Finally, the auditory stimuli are valid stimuli that may benefit the assessment of the memorization of spatial-auditory associations, but the memorization of spatial-visual associations is dominant, as our results suggest. es_ES
dc.description.sponsorship We would like to thank all of the people who participated in the study. We would like to thank the editor and reviewers for their valuable suggestions. This work was funded mainly by MCIN/AEI/10.13039/501100011033/ and by "ERDF A way of making Europe" through the project AR3Senses (TIN2017-87044-R); other support was received from Gobierno de Aragon (research group S31_20D) and FEDER 2020-2022 "Construyendo Europa desde Aragon". es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal on Multimodal User Interfaces es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Augmented reality es_ES
dc.subject SLAM es_ES
dc.subject Spatial memory es_ES
dc.subject Auditory stimuli es_ES
dc.subject Visual stimuli es_ES
dc.subject Assessment es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12193-022-00392-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-87044-R/ES/REALIDAD AUMENTADA A TRAVES DE VARIOS CANALES SENSORIALES. APLICACION A PROCESOS DE ORIENTACION Y LOCALIZACION ESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Aragón//S31_20D/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Juan, M.; Mendez-Lopez, M.; Fidalgo, C.; Mollá, R.; Vivó, R.; Paramo, D. (2022). A SLAM-based augmented reality app for the assessment of spatial short-term memory using visual and auditory stimuli. Journal on Multimodal User Interfaces. 16(3):319-333. https://doi.org/10.1007/s12193-022-00392-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12193-022-00392-4 es_ES
dc.description.upvformatpinicio 319 es_ES
dc.description.upvformatpfin 333 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\482882 es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Baddeley A (1992) Working memory. Science (80-) 255:556–559. https://doi.org/10.1126/science.1736359 es_ES
dc.description.references Torsten Schmidt T, Blankenburg F (2018) Brain regions that retain the spatial layout of tactile stimuli during working memory—a ‘tactospatial sketchpad’? Neuroimage 178:531–539 es_ES
dc.description.references Burgess N, Becker S, King JA, O’Keefe J (2001) Memory for events and their spatial context: models and experiments. Philos Trans R Soc B Biol Sci 356:1493–1503. https://doi.org/10.1098/rstb.2001.0948 es_ES
dc.description.references Neguţ A, Matu SA, Sava FA, David D (2016) Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: a meta-analytic approach. Comput Human Behav 54:414–424. https://doi.org/10.1016/j.chb.2015.08.029 es_ES
dc.description.references Doniger GM, Beeri MS, Bahar-Fuchs A et al (2018) Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer’s disease risk: a randomized controlled trial. Alzheimer’s Dement Transl Res Clin Interv 4:118–129. https://doi.org/10.1016/j.trci.2018.02.005 es_ES
dc.description.references van der Kuil MNA, Visser-Meily JMA, Evers AWM, van der Ham IJM (2018) A usability study of a serious game in cognitive rehabilitation: A compensatory navigation training in acquired brain injury patients. Front Psychol 9:846. https://doi.org/10.3389/fpsyg.2018.00846 es_ES
dc.description.references Barrett AM, Muzaffar T (2014) Spatial cognitive rehabilitation and motor recovery after stroke. Curr Opin Neurol 27:653–658. https://doi.org/10.1097/WCO.0000000000000148 es_ES
dc.description.references van der Ham IJM, Claessen MHG (2020) How age relates to spatial navigation performance: functional and methodological considerations. Ageing Res Rev 58:101020. https://doi.org/10.1016/j.arr.2020.101020 es_ES
dc.description.references Cullen KE, Taube JS (2017) Our sense of direction: progress, controversies and challenges. Nat Neurosci 20:1465–1473. https://doi.org/10.1038/nn.4658 es_ES
dc.description.references Ruddle RA, Lessels S (2009) The benefits of using a walking interface to navigate virtual environments. ACM Trans Comput Interact 16:5. https://doi.org/10.1145/1502800.1502805 es_ES
dc.description.references Bigelow J, Poremba A (2014) Achilles’ Ear? Inferior human short-term and recognition memory in the auditory modality. PLoS One 9:e89914. https://doi.org/10.1371/journal.pone.0089914 es_ES
dc.description.references Gloede ME, Gregg MK (2019) The fidelity of visual and auditory memory. Psychon Bull Rev 26:1325–1332. https://doi.org/10.3758/s13423-019-01597-7 es_ES
dc.description.references Langlois J, Bellemare C, Toulouse J, Wells GA (2015) Spatial abilities and technical skills performance in health care: a systematic review. Med Educ 49:1065–1085. https://doi.org/10.1111/medu.12786 es_ES
dc.description.references Mitolo M, Gardini S, Caffarra P et al (2015) Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: a study in older adults. Cogn Process 16:165–176. https://doi.org/10.1007/s10339-015-0647-3 es_ES
dc.description.references Juan M-C, Mendez-Lopez M, Perez-Hernandez E, Albiol-Perez S (2014) Augmented reality for the assessment of children’s spatial memory in real settings. PLoS One 9:e113751. https://doi.org/10.1371/journal.pone.0113751 es_ES
dc.description.references Picucci L, Caffò AO, Bosco A (2011) Besides navigation accuracy: gender differences in strategy selection and level of spatial confidence. J Environ Psychol 31:430–438. https://doi.org/10.1016/j.jenvp.2011.01.005 es_ES
dc.description.references Walkowiak S, Foulsham T, Eardley AF (2015) Individual differences and personality correlates of navigational performance in the virtual route learning task. Comput Human Behav 45:402–410. https://doi.org/10.1016/j.chb.2014.12.041 es_ES
dc.description.references Loachamín M, Juan M-C, Mendez-Lopez M et al (2019) Developing and evaluating a game for the assessment of spatial memory using auditory stimuli. IEEE Lat Am Trans 13:1653–1661. https://doi.org/10.1109/TLA.2019.8986443 es_ES
dc.description.references Bohil CJ, Alicea B, Biocca FA (2011) Virtual reality in neuroscience research and therapy. Nat Rev Neurosci 12:752–762. https://doi.org/10.1038/nrn3122 es_ES
dc.description.references Fabroyir H, Teng WC (2018) Navigation in virtual environments using head-mounted displays: allocentric vs. egocentric behaviors. Comput Human Behav 80:331–343. https://doi.org/10.1016/j.chb.2017.11.033 es_ES
dc.description.references León I, Tascón L, Cimadevilla JM (2016) Age and gender-related differences in a spatial memory task in humans. Behav Brain Res 306:8–12. https://doi.org/10.1016/j.bbr.2016.03.008 es_ES
dc.description.references Münzer S, Zadeh MV (2016) Acquisition of spatial knowledge through self-directed interaction with a virtual model of a multi-level building: effects of training and individual differences. Comput Human Behav 64:191–205. https://doi.org/10.1016/j.chb.2016.06.047 es_ES
dc.description.references Cimadevilla JM, Lizana JR, Roldán MD et al (2014) Spatial memory alterations in children with epilepsy of genetic origin or unknown cause. Epileptic Disord 16:203–207. https://doi.org/10.1684/epd.2014.0661 es_ES
dc.description.references Reggente N, Essoe JKY, Baek HY, Rissman J (2020) The method of loci in virtual reality: explicit binding of objects to spatial contexts enhances subsequent memory recall. J Cogn Enhanc 4:12–30. https://doi.org/10.1007/s41465-019-00141-8 es_ES
dc.description.references Commins S, Duffin J, Chaves K et al (2019) NavWell: a simplified virtual-reality platform for spatial navigation and memory experiments. Behav Res Methods 52:1189–1207. https://doi.org/10.3758/s13428-019-01310-5 es_ES
dc.description.references Cárdenas-Delgado S, Juan MC, Méndez-López M, Pérez-Hernández E (2017) Could people with stereo-deficiencies have a rich 3D experience using HMDs? In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Pp. 97–116 es_ES
dc.description.references Cárdenas-Delgado S, Méndez-López M, Juan MC, et al (2017) Using a virtual maze task to assess spatial short-term memory in adults. In: VISIGRAPP 2017—Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. pp. 46–57 es_ES
dc.description.references Rodríguez-Andrés D, Juan M-C, Méndez-López M et al (2016) MnemoCity task: assessment of childrens spatial memory using stereoscopy and virtual environments. PLoS One 11:e0161858. https://doi.org/10.1371/journal.pone.0161858 es_ES
dc.description.references Rodriguez-Andres D, Mendez-Lopez M, Juan M-C, Perez-Hernandez E (2018) A virtual object-location task for children: gender and videogame experience influence navigation; age impacts memory and completion time. Front Psychol 9:451. https://doi.org/10.3389/fpsyg.2018.00451 es_ES
dc.description.references Mendez-Lopez M, Perez-Hernandez E, Juan M-C (2016) Learning in the navigational space: age differences in a short-term memory for objects task. Learn Individ Differ 50:11–22. https://doi.org/10.1016/j.lindif.2016.06.028 es_ES
dc.description.references Munoz-Montoya F, Juan M-C, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on SLAM to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627 es_ES
dc.description.references Munoz-Montoya F, Fidalgo C, Juan M-C, Mendez-Lopez M (2019) Memory for object location in augmented reality: the role of gender and the relationship among spatial and anxiety outcomes. Front Hum Neurosci 13:113. https://doi.org/10.3389/fnhum.2019.00113 es_ES
dc.description.references Keil J, Korte A, Ratmer A et al (2020) Augmented reality (AR) and spatial cognition: effects of holographic grids on distance estimation and location memory in a 3D indoor scenario. PFG J Photogramm Remote Sens Geoinf Sci 88:165–172. https://doi.org/10.1007/s41064-020-00104-1 es_ES
dc.description.references Peleg-Adler R, Lanir J, Korman M (2018) The effects of aging on the use of handheld augmented reality in a route planning task. Comput Human Behav 81:52–62. https://doi.org/10.1016/j.chb.2017.12.003 es_ES
dc.description.references Chu CH, Wang SL, Tseng BC (2017) Mobile navigation services with augmented reality. IEEJ Trans Electr Electron Eng 12:S95–S103. https://doi.org/10.1002/tee.22443 es_ES
dc.description.references Rehman U, Cao S (2017) Augmented-reality-based indoor navigation: a comparative analysis of handheld devices versus google glass. IEEE Trans Human-Machine Syst 47:140–151. https://doi.org/10.1109/THMS.2016.2620106 es_ES
dc.description.references Cattaneo Z, Bhatt E, Merabet LB et al (2008) The influence of reduced visual acuity on age-related decline in spatial working memory: an investigation. Aging Neuropsychol Cogn 15:687–702. https://doi.org/10.1080/13825580802036951 es_ES
dc.description.references Papadopoulos K, Koustriava E (2011) The impact of vision in spatial coding. Res Dev Disabil 32:2084–2091. https://doi.org/10.1016/j.ridd.2011.07.041 es_ES
dc.description.references Calle-Bustos A-M, Juan M-C, García-García I, Abad F (2017) An augmented reality game to support therapeutic education for children with diabetes. PLoS One 12:e0184645. https://doi.org/10.1371/journal.pone.0184645 es_ES
dc.description.references Brooke J (1996) SUS-A quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland AL (eds) Usability evaluation in industry. Taylor & Francis, London es_ES
dc.description.references Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire. In: Proc 5th Annu Int Workshop Presence. Pp. 1–7 es_ES
dc.description.references Slater M, Usoh M, Steed A (1994) Depth of presence in virtual environments. Presence Teleoperators Virtual Environ 3:130–144. https://doi.org/10.1162/pres.1994.3.2.130 es_ES
dc.description.references Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ 7:225–240. https://doi.org/10.1162/105474698565686 es_ES
dc.description.references Patrício M, Ferreira F, Oliveiros B, Caramelo F (2017) Comparing the performance of normality tests with ROC analysis and confidence intervals. Commun Stat Simul Comput 46:7535–7551. https://doi.org/10.1080/03610918.2016.1241410 es_ES
dc.description.references Munoz-Montoya F, Juan MC, Mendez-Lopez M et al (2021) SLAM-based augmented reality for the assessment of short-Term spatial memory. A comparative study of visual versus tactile stimuli. PLoS One 16:1–30. https://doi.org/10.1371/journal.pone.0245976 es_ES
dc.description.references Davis SW, Zhuang J, Wright P, Tyler LK (2014) Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia 63:107–115. https://doi.org/10.1016/j.neuropsychologia.2014.08.017 es_ES
dc.description.references Koen JD, Borders AA, Petzold MT, Yonelinas AP (2017) Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus 27:184–193. https://doi.org/10.1002/hipo.22682 es_ES
dc.description.references Hampstead BM, Stringer AY, Stilla RF et al (2011) Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia 49:2349–2361. https://doi.org/10.1016/j.neuropsychologia.2011.04.008 es_ES
dc.description.references Dunn W (1997) The impact of sensory processing abilities on the daily lives of young children and their families: a conceptual model. Inf Young Child 9(4):23–35 es_ES
dc.description.references Metz AE, Boling D, DeVore A et al (2019) Dunn’s model of sensory processing: an investigation of the axes of the four-quadrant model in healthy adults. Brain Sci 9:35. https://doi.org/10.3390/brainsci9020035 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem