- -

Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morell-Monzó, Sergio es_ES
dc.contributor.author Estornell Cremades, Javier es_ES
dc.contributor.author Sebastiá-Frasquet, M.-T. es_ES
dc.date.accessioned 2023-12-18T19:03:19Z
dc.date.available 2023-12-18T19:03:19Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 0168-1699 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200850
dc.description.abstract [EN] Agricultural land abandonment is an increasing phenomenon around the world with relevant environmental and socio-economic implications. In the European Union about 11 % of agricultural land is at high risk of abandonment. The Comunitat Valenciana region (Spain) is the most important citrus producer in Europe suffering from this problem. Identifying the status of citrus crops at the parcel level is essential for policymakers in agriculture. This work assessed the use of WorldView-3 data, Very High-Resolution Airborne Images, and Structure from Motion point clouds to identify the status of citrus parcels using two machine learning algorithms: Random Forest and Support Vector Machines. Different analyses involving combinations of the three data sources were carried out to assess the impact on classification accuracy. The results showed the high potential of airborne imagery (OA ¿ 0.967) and WorldView-3 (OA ¿ 0.936) to detect parcel status using a single image. The SfM data showed a lower potential (OA ¿ 0.825). Adding SfM point cloud to the multispectral information produced small improvements (0.4¿2.0 %) in classification accuracy. The class separability analysis showed the importance of WV-3 SWIR bands to detect abandoned parcels as they produce more spectral separability over the productive parcels in the 1570 nm ¿ 2330 nm spectrum. The results also show the importance of GLCM texture features extracted from sub-metric images due to their ability to model spatial planting patterns typical of fruit crops es_ES
dc.description.sponsorship This research was funded by regional government of Spain, Generalitat Valenciana, within the framework of the research project AICO/2020/246. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Agricultural land abandonment es_ES
dc.subject Citrus crops es_ES
dc.subject Worldview-3 es_ES
dc.subject Airborne imagery es_ES
dc.subject Structure es_ES
dc.subject From motion point clouds es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2022.107504 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F246//ESTUDIO DEL ABANDONO DE TIERRAS UTILIZANDO DIFERENTES TÉCNICAS DE TELEDETECCIÓN / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Morell-Monzó, S.; Estornell Cremades, J.; Sebastiá-Frasquet, M. (2023). Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels. Computers and Electronics in Agriculture. 204:1-11. https://doi.org/10.1016/j.compag.2022.107504 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compag.2022.107504 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 204 es_ES
dc.relation.pasarela S\478180 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem