- -

Multiple Criteria Decision Support System for Customer Segmentation using a Sorting Outranking Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple Criteria Decision Support System for Customer Segmentation using a Sorting Outranking Method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrera, Felipe es_ES
dc.contributor.author Segura Maroto, Marina es_ES
dc.contributor.author Maroto Álvarez, Mª Concepción es_ES
dc.date.accessioned 2023-12-18T19:04:27Z
dc.date.available 2023-12-18T19:04:27Z
dc.date.issued 2024-03-15 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200858
dc.description.abstract [EN] For companies, customer segmentation plays a key role in improving supply chain management by implementing appropriate marketing strategies. The objectives of this research are to design and validate a multicriteria model to support decision making for customer segmentation in a business to business context. First, the model based on the transactional customer behaviour is extended by a hierarchy with three main criteria: Recency, Frequency and Monetary (RFM), customer collaboration and growth rates. Customer collaboration includes quota compliance, variety of products and customer commitment to sustainability (reverse logistics and shared information). Second, the Global Local Net Flow Sorting (GLNF sorting) algorithm is implemented and validated using real company data to classify 8,157 customers of a multinational healthcare company. Third, the SILS quality indicator has been implemented and validated to assess the quality of preference-ordered customer groups and its parameters have been adapted for contexts with thousands of alternatives. The results are also compared with an alternative model based on data mining (K-means). The multicriteria system proposed allows to segment thousands of customers in ordered categories by preferences according to company strategies. The segments generated are more homogeneous, robust and understandable by managers than those from alternative methods. These advantages represent a relevant contribution to automating supply chain management while providing detailed analysis tools for decision making. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multiple criteria analysis es_ES
dc.subject Supply chain management es_ES
dc.subject Customer relationship management es_ES
dc.subject RFM es_ES
dc.subject GLNF sorting es_ES
dc.subject PROMETHEE es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Multiple Criteria Decision Support System for Customer Segmentation using a Sorting Outranking Method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2023.122310 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Barrera, F.; Segura Maroto, M.; Maroto Álvarez, MC. (2024). Multiple Criteria Decision Support System for Customer Segmentation using a Sorting Outranking Method. Expert Systems with Applications. 238:1-17. https://doi.org/10.1016/j.eswa.2023.122310 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2023.122310 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 238 es_ES
dc.relation.pasarela S\501595 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem