- -

Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation

Show full item record

Martí, P.; González Altozano, P.; Gasque Albalate, M.; Turegano Pastor, JV.; Royuela, A. (2023). Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation. Irrigation Science. 1-20. https://doi.org/10.1007/s00271-023-00898-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200865

Files in this item

Item Metadata

Title: Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation
Author: Martí, Pau González Altozano, Pablo Gasque Albalate, Maria Turegano Pastor, José Vicente Royuela, Alvaro
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] The designer of irrigation systems must consider a complex combination of emitter type, emitter uniformity, hydraulics, topography, desired water distribution, crop salt tolerance, water requirements, water quality, ...[+]
Copyrigths: Reconocimiento (by)
Source:
Irrigation Science. (issn: 0342-7188 )
DOI: 10.1007/s00271-023-00898-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00271-023-00898-z
Thanks:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Type: Artículo

References

Al-Ogaidi AAM, Wayayok A, Rowshon MK, Fikri Abdullah A (2016) Wetting patterns estimation under drip irrigation Systems using an enhanced empirical model. Agric Water Manag 176:203–213. https://doi.org/10.1016/j.agwat.2016.06.002

ASAE EP 405.1 1988 (R2019) Design and installation of microirrigation systems. American Society of Agricultural Engineers. USA

Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71:23–35. https://doi.org/10.1007/BF02182638 [+]
Al-Ogaidi AAM, Wayayok A, Rowshon MK, Fikri Abdullah A (2016) Wetting patterns estimation under drip irrigation Systems using an enhanced empirical model. Agric Water Manag 176:203–213. https://doi.org/10.1016/j.agwat.2016.06.002

ASAE EP 405.1 1988 (R2019) Design and installation of microirrigation systems. American Society of Agricultural Engineers. USA

Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71:23–35. https://doi.org/10.1007/BF02182638

Ayars J E, Hutmacher RB, Schoneman RA, Vail SS, Patton SH, Felleke D (1985) Salt distribution under cotton trickle irrigated with saline water. In: Drip/Trickle Irrigation in Action. Proc. Third Drip/Trickle Irrigation Congress, Fresno, California. Nov. 18–21, 1985. ASAE. Vol 2:666–672

Ayars JE, Bucks DA, Lamm FR, Nakayama FS (2007) Introduction. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 1–26

Bar-Yosef B, Sagiv B, Markovitch T (1989) Sweet corn response to surface and subsurface trickle phosphorus fertigation. Agron J 81:443–447

Benami A, Ofen A (1983) Irrigation engineering. Irrigation Engineering Scientific Publication, Haifa, Israel

Bielorai H (1985) Moisture, salinity, and root distribution in drip irrigated grapefruit. In: Drip/Trickle Irrigation in Action. Proc. Third Drip/Trickle Irrigation Congress, Fresno, California. Nov. 18–21, 1985. ASAE Vol 2:562–567

Black JDF, West DW (1974) Water uptake by an apple tree with various proportions of the root system supplied with water. In: Proceedings of the 2nd International Drip Irrigation Congress. California, USA. pp 32–433

Clark GA, Haman DZ, Prochaska JF, Yitayew M (2007) General system design principles. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 161–220

del Vigo Á, Zubelzu S, Juana L (2020) Numerical routine for soil dynamics from trickle irrigation. Appl Math Model 83:371–385. https://doi.org/10.1016/j.apm.2020.01.058

del Vigo Á, Juana L, Rodriguez-Sinobas L (2022) Modelo numérico de simulación de flujo de agua en el suelo afectado por la absorción de la raíz. Ingeniería Del Agua 26(1):37–46. https://doi.org/10.4995/ia.2022.16531

del Vigo Á, Colimba J, Juana L, Rodriguez-Sinobas L (2023) Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrig Sci 41:141–154. https://doi.org/10.1007/s00271-022-00806-x

Friedman SP, Communar G, Gamliel A (2016) DIDAS-User-friendly software package for assisting drip irrigation design and scheduling. Comput Electron Agric 120:36–52

Howell TA, Meron M, Davis KR, Phene CJ, Yamada H (1987) Water management of trickle and furrow irrigated narrow row cotton in the San Joaquin Valley. Appl Eng Agric 3:222–227. https://doi.org/10.13031/2013.26678

Karmeli D, Peri G, Todes M (1985) Irrigation Systems. Oxford University Press, Oxford, Design and operation

Karimi B, Mohammadi P, Sanikhani H, Salih SQ, Yassen ZM (2020) Modeling wetted areas of moisture bulb for drip irrigation systems: an enhanced empirical model and artificial neural network. Comput Electron Agric 178(11):105767. https://doi.org/10.1016/j.compag.2020.105767

Keller J (1978) Trickle irrigation. Section 15-7. National Engineering Handbook. Soil Conservation Service. USDA, USA

Keller J, Karmeli D (1974) Trickle irrigation design. Rainbird Sprinkler Manufacturing Corporation, Glendora, California

Levin I, Assaf R, Bravdo B (1979) Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant Soil 52:31–40. https://doi.org/10.1007/BF02197729

Meiri A, Frenkel H, Mantell A (1992) Cotton response to water and salinity under sprinkler and drip irrigation. Agron J 84:44–50

Montalvo T (2003) Riego localizado: diseño de instalaciones. Inter-técnica, Spain

Ozgur K, Payam K, Salim H, Bakhtiar K, Nazir K (2021) Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – gravity search algorithm. Agric Water Manag 256:107067. https://doi.org/10.1016/j.agwat.2021.107067

Pizarro F (1996) Riegos Localizados de alta frecuencia: goteo, microaspersión, exudación. Mundi-Prensa, Spain

Plaut Z, Carmi A, Grava A (1988) Cotton growth and production under drip-irrigation restricted soil wetting. Irrig Sci 9:143–156. https://doi.org/10.1007/BF00262356

Rodrigo J, Hernández JM, Pérez A, González JF (1997) Riego localizado. Mundi-Prensa, Spain

Russo D (1987) Lettuce yield-irrigation water quality and quantity relationships in a gypsiferous desert soil. Agron J 79:8–14

Schwankl LJ, Hanson BR (2007) Surface drip irrigation. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 431–472

Schwankl LJ, Edstrom J, Hopmans J, Andreu L, Koumanov K (1999) Microsprinklers wet larger soil volume; boost almond yield, tree growth. Calif Agric 53(2):39–43

Schwartzman M, Zur B (1986) Emitter spacing and geometry of wetted soil volume. J Irrig Drain Eng 112(3):242–253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242)

Shiri J, Karimi B, Karimi N, Kazemi MH, Karimi S (2020) Simulating wetting front dimensions of drip irrigation systems: multi criteria assessment of soft computing models. J Hydrol 585:124792. https://doi.org/10.1016/j.jhydrol.2020.124792

Šimůnek J, van Genuchten MT, Šejna M (2006) The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Technical Manual Version 1.0 University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic

Šimůnek J, van Genuchten MT, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25. https://doi.org/10.2136/vzj2016.04.0033

USDA-NRCS (USDA-Natural Resources Conservation Service) (1984) Trickle irrigation, national engineering handbook. Section 15, Ch 7

Waller P, Yitayew M (2016) Irrigation and drainage engineering. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-05699-9

Wang J, Chen R (2020) An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig Sci 38:147–162. https://doi.org/10.1007/s00271-019-00656-0

Willoughby YP, Cockroft B (1974) Changes in root patterns of peach trees under tickle irrigation. In: Proceedings of the 2nd International Drip Irrigation Congress. California, USA. pp 439–442

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record