- -

Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí, Pau es_ES
dc.contributor.author González Altozano, Pablo es_ES
dc.contributor.author Gasque Albalate, Maria es_ES
dc.contributor.author Turegano Pastor, José Vicente es_ES
dc.contributor.author Royuela, Alvaro es_ES
dc.date.accessioned 2023-12-18T19:05:36Z
dc.date.available 2023-12-18T19:05:36Z
dc.date.issued 2023-11-29 es_ES
dc.identifier.issn 0342-7188 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200865
dc.description.abstract [EN] The designer of irrigation systems must consider a complex combination of emitter type, emitter uniformity, hydraulics, topography, desired water distribution, crop salt tolerance, water requirements, water quality, fertilizer injection, soil salinity, cultural practices, and other site-specifc conditions. In contrast to the approaches applied for the hydraulic design of irrigation installations, there is not a clear, general and consolidated design criterion for calculating the number required emitters per plant. In most cases, given the wide spectrum of possible scenarios, only guideline recommendations can be found, and the fnal decision is often based on the subjective experience of the designer or grower. This paper aims at revising, clarifying and refning the existing published guidelines and methodologies for estimating the required emitters per plant in drip irrigation, focussing on the Montalvo approach. The agronomic design should satisfy, among others, two specifc conditions: (i) the emitters should wet at least a minimum threshold of the soil area (or volume) corresponding to the plant for ensuring a proper development of the roots; (ii) overlapping between emitter bulbs is required for merging wetted volumes and avoiding salt concentration near the root zone. Relying on this basis, a thorough theoretical geometric analysis of the overlapping between wet bulbs of contiguous emitters is carried out. As a result, Montalvo's overlapping coefcients are deduced here. This author assumes an identical net wetted area for all emitters in the laterals, but it can be stated that the overlapping areas between emitters difer in extreme emitters and interior emitters, as well as in confgurations with one lateral per plant row and two laterals per plant row. Therefore, this study proposes new formulations for the computation of the overlapping coefcient, which need to incorporate the number of emitters as an additional variable, as well as to distinguish between the presence of one or two laterals per plant row, and between grouped and non-grouped emitters. In one lateral per plant row, the original overlapping coefcient underestimates the net wetted area by one emitter and thus overestimates the theoretical number of required emitters. In the case of two laterals per plant row, the original overlapping coefcient overestimates the net wetted area in the interior emitters, and thus underestimates the theoretical number of required emitters per plant. The presented formulations are applied in diferent practical examples covering a wide range of scenarios. The results allow a general overview of the infuence of the soil type, the emitter fow rate, and the selected overlapping ratio in the number of required emitters per plant. The revision of guidelines and methods presented here, complemented with other experimental results and models of soil water dynamics under drip irrigation, might contribute to a better decision making of designers and feld engineers. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Irrigation Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00271-023-00898-z es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Martí, P.; González Altozano, P.; Gasque Albalate, M.; Turegano Pastor, JV.; Royuela, A. (2023). Geometric overlapping coefcients for calculating the required emitters per plant in drip irrigation. Irrigation Science. 1-20. https://doi.org/10.1007/s00271-023-00898-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00271-023-00898-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\505486 es_ES
dc.description.references Al-Ogaidi AAM, Wayayok A, Rowshon MK, Fikri Abdullah A (2016) Wetting patterns estimation under drip irrigation Systems using an enhanced empirical model. Agric Water Manag 176:203–213. https://doi.org/10.1016/j.agwat.2016.06.002 es_ES
dc.description.references ASAE EP 405.1 1988 (R2019) Design and installation of microirrigation systems. American Society of Agricultural Engineers. USA es_ES
dc.description.references Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71:23–35. https://doi.org/10.1007/BF02182638 es_ES
dc.description.references Ayars J E, Hutmacher RB, Schoneman RA, Vail SS, Patton SH, Felleke D (1985) Salt distribution under cotton trickle irrigated with saline water. In: Drip/Trickle Irrigation in Action. Proc. Third Drip/Trickle Irrigation Congress, Fresno, California. Nov. 18–21, 1985. ASAE. Vol 2:666–672 es_ES
dc.description.references Ayars JE, Bucks DA, Lamm FR, Nakayama FS (2007) Introduction. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 1–26 es_ES
dc.description.references Bar-Yosef B, Sagiv B, Markovitch T (1989) Sweet corn response to surface and subsurface trickle phosphorus fertigation. Agron J 81:443–447 es_ES
dc.description.references Benami A, Ofen A (1983) Irrigation engineering. Irrigation Engineering Scientific Publication, Haifa, Israel es_ES
dc.description.references Bielorai H (1985) Moisture, salinity, and root distribution in drip irrigated grapefruit. In: Drip/Trickle Irrigation in Action. Proc. Third Drip/Trickle Irrigation Congress, Fresno, California. Nov. 18–21, 1985. ASAE Vol 2:562–567 es_ES
dc.description.references Black JDF, West DW (1974) Water uptake by an apple tree with various proportions of the root system supplied with water. In: Proceedings of the 2nd International Drip Irrigation Congress. California, USA. pp 32–433 es_ES
dc.description.references Clark GA, Haman DZ, Prochaska JF, Yitayew M (2007) General system design principles. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 161–220 es_ES
dc.description.references del Vigo Á, Zubelzu S, Juana L (2020) Numerical routine for soil dynamics from trickle irrigation. Appl Math Model 83:371–385. https://doi.org/10.1016/j.apm.2020.01.058 es_ES
dc.description.references del Vigo Á, Juana L, Rodriguez-Sinobas L (2022) Modelo numérico de simulación de flujo de agua en el suelo afectado por la absorción de la raíz. Ingeniería Del Agua 26(1):37–46. https://doi.org/10.4995/ia.2022.16531 es_ES
dc.description.references del Vigo Á, Colimba J, Juana L, Rodriguez-Sinobas L (2023) Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrig Sci 41:141–154. https://doi.org/10.1007/s00271-022-00806-x es_ES
dc.description.references Friedman SP, Communar G, Gamliel A (2016) DIDAS-User-friendly software package for assisting drip irrigation design and scheduling. Comput Electron Agric 120:36–52 es_ES
dc.description.references Howell TA, Meron M, Davis KR, Phene CJ, Yamada H (1987) Water management of trickle and furrow irrigated narrow row cotton in the San Joaquin Valley. Appl Eng Agric 3:222–227. https://doi.org/10.13031/2013.26678 es_ES
dc.description.references Karmeli D, Peri G, Todes M (1985) Irrigation Systems. Oxford University Press, Oxford, Design and operation es_ES
dc.description.references Karimi B, Mohammadi P, Sanikhani H, Salih SQ, Yassen ZM (2020) Modeling wetted areas of moisture bulb for drip irrigation systems: an enhanced empirical model and artificial neural network. Comput Electron Agric 178(11):105767. https://doi.org/10.1016/j.compag.2020.105767 es_ES
dc.description.references Keller J (1978) Trickle irrigation. Section 15-7. National Engineering Handbook. Soil Conservation Service. USDA, USA es_ES
dc.description.references Keller J, Karmeli D (1974) Trickle irrigation design. Rainbird Sprinkler Manufacturing Corporation, Glendora, California es_ES
dc.description.references Levin I, Assaf R, Bravdo B (1979) Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant Soil 52:31–40. https://doi.org/10.1007/BF02197729 es_ES
dc.description.references Meiri A, Frenkel H, Mantell A (1992) Cotton response to water and salinity under sprinkler and drip irrigation. Agron J 84:44–50 es_ES
dc.description.references Montalvo T (2003) Riego localizado: diseño de instalaciones. Inter-técnica, Spain es_ES
dc.description.references Ozgur K, Payam K, Salim H, Bakhtiar K, Nazir K (2021) Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – gravity search algorithm. Agric Water Manag 256:107067. https://doi.org/10.1016/j.agwat.2021.107067 es_ES
dc.description.references Pizarro F (1996) Riegos Localizados de alta frecuencia: goteo, microaspersión, exudación. Mundi-Prensa, Spain es_ES
dc.description.references Plaut Z, Carmi A, Grava A (1988) Cotton growth and production under drip-irrigation restricted soil wetting. Irrig Sci 9:143–156. https://doi.org/10.1007/BF00262356 es_ES
dc.description.references Rodrigo J, Hernández JM, Pérez A, González JF (1997) Riego localizado. Mundi-Prensa, Spain es_ES
dc.description.references Russo D (1987) Lettuce yield-irrigation water quality and quantity relationships in a gypsiferous desert soil. Agron J 79:8–14 es_ES
dc.description.references Schwankl LJ, Hanson BR (2007) Surface drip irrigation. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for crop production. Design, operation, and management. Elsevier, Amsterdam, pp 431–472 es_ES
dc.description.references Schwankl LJ, Edstrom J, Hopmans J, Andreu L, Koumanov K (1999) Microsprinklers wet larger soil volume; boost almond yield, tree growth. Calif Agric 53(2):39–43 es_ES
dc.description.references Schwartzman M, Zur B (1986) Emitter spacing and geometry of wetted soil volume. J Irrig Drain Eng 112(3):242–253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242) es_ES
dc.description.references Shiri J, Karimi B, Karimi N, Kazemi MH, Karimi S (2020) Simulating wetting front dimensions of drip irrigation systems: multi criteria assessment of soft computing models. J Hydrol 585:124792. https://doi.org/10.1016/j.jhydrol.2020.124792 es_ES
dc.description.references Šimůnek J, van Genuchten MT, Šejna M (2006) The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Technical Manual Version 1.0 University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic es_ES
dc.description.references Šimůnek J, van Genuchten MT, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25. https://doi.org/10.2136/vzj2016.04.0033 es_ES
dc.description.references USDA-NRCS (USDA-Natural Resources Conservation Service) (1984) Trickle irrigation, national engineering handbook. Section 15, Ch 7 es_ES
dc.description.references Waller P, Yitayew M (2016) Irrigation and drainage engineering. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-05699-9 es_ES
dc.description.references Wang J, Chen R (2020) An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig Sci 38:147–162. https://doi.org/10.1007/s00271-019-00656-0 es_ES
dc.description.references Willoughby YP, Cockroft B (1974) Changes in root patterns of peach trees under tickle irrigation. In: Proceedings of the 2nd International Drip Irrigation Congress. California, USA. pp 439–442 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem