Mostrar el registro completo del ítem
Layana-Castro, PE.; García-Garví, A.; Sánchez Salmerón, AJ. (2023). Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences. Heliyon. 9(4):1-12. https://doi.org/10.1016/j.heliyon.2023.e14715
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200870
Título: | Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences | |
Autor: | Layana-Castro, Pablo Emmanuel | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Pose estimation of C. elegans in image sequences is challenging and even more difficult in low-resolution images. Problems range from occlusions, loss of worm identity, and overlaps to aggregations that are too complex ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.heliyon.2023.e14715 | |
Código del Proyecto: |
|
|
Agradecimientos: |
Prof. Antonio-Jose Sanchez-Salmeron; Pablo E. Layana Castro; Antonio Garcia Garvi were supported by Ministerio de Ciencia, Innovacion y Universidades [RTI2018-094312-B-I00 (European FEDER funds); FPI PRE2019-088214; ...[+]
|
|
Tipo: |
|