- -

Decoupling inequalities with exponential constants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decoupling inequalities with exponential constants

Mostrar el registro completo del ítem

Carando, D.; Marceca, F.; Sevilla Peris, P. (2022). Decoupling inequalities with exponential constants. Mathematische Annalen. 386(1-2):1041-1079. https://doi.org/10.1007/s00208-022-02418-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200889

Ficheros en el ítem

Metadatos del ítem

Título: Decoupling inequalities with exponential constants
Autor: Carando, Daniel Marceca, Felipe Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Decoupling inequalities disentangle complex dependence structures of random objects so that they can be analyzed by means of standard tools from the theory of independent random variables. We study decoupling inequalities ...[+]
Palabras clave: Multilinear forms , Random-variables , Series , Spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematische Annalen. (issn: 0025-5831 )
DOI: 10.1007/s00208-022-02418-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00208-022-02418-4
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F170//OPERADORES EN ESPACIOS DE FUNCIONES ANALITICAS O DIFERENCIABLES/
info:eu-repo/grantAgreement/ANPCyT//PICT 2018-04104/
info:eu-repo/grantAgreement/CONICET//11220200102366CO/
info:eu-repo/grantAgreement/FWF//Y 1199/
Agradecimientos:
D. Carando: Supported by CONICET-PIP 11220200102366CO, and ANPCyT PICT 2018-04104. F. Marceca: Supported by a CONICET doctoral fellowship, CONICET-PIP 11220200102366CO, and ANPCyT PICT 2018-04104. Current address: Faculty ...[+]
Tipo: Artículo

References

Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Springer, New York (2006)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016) [+]
Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Springer, New York (2006)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016)

Carando, D., Marceca, F., Scotti, M., Tradacete, P.: Random unconditional convergence of vector-valued Dirichlet series. J. Funct. Anal. 277(9), 3156–3178 (2019)

Carando, D., Marceca, F., Sevilla-Peris, P.: Hausdorff-Young-type inequalities for vector-valued Dirichlet series. Trans. Am. Math. Soc. 373(8), 5627–5652 (2020)

Casazza, P.G., Nielsen, N.J.: A Gaussian average property of Banach spaces. Ill. J. Math. 41(4), 559–576 (1997)

de Acosta, A.: A decoupling inequality for multilinear functions of stable vectors. Probab. Math. Stat. 8, 71–76 (1987)

De la Peña, V., Giné, E.: Decoupling: from Dependence to Independence. Springer, Berlin (1999)

Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, volume 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)

Defant, A., Mastyło, M.: Subgaussian Kahane–Salem–Zygmund inequalities in Banach spaces, (2020). Preprint: arXiv:2008.04429

Defant, A., Mastyło, M., Pérez, A.: Bohr’s phenomenon for functions on the Boolean cube. J. Funct. Anal. 275(11), 3115–3147 (2018)

Defant, A., Mastyło, M., Pérez, A.: On the Fourier spectrum of functions on Boolean cubes. Math. Ann. 374(1–2), 653–680 (2019)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. In: Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

Dineen, S.: Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999)

Harris, L.A.: Markov’s inequality for polynomials on normed linear spaces. Math. Balkanica (NS) 16(1–4), 315–326 (2002). (Dedicated to the 70th anniversary of Academician Blagovest Sendov)

Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. In: Vol. II: Probabilistic Methods and Operator Theory, volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Cham (2017)

Ivanisvili, P., van Handel, R., Volberg, A.: Rademacher type and Enflo type coincide. Ann. Math. 192(2), 665–678 (2020)

Kwapień, S.: On a theorem of L. Schwartz and its applications to absolutely summing operators. Stud. Math. 38, 193–201 (1970). (errata insert)

Kwapień, S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Stud. Math. 44, 583–595 (1972)

Kwapień, S.: Decoupling inequalities for polynomial chaos. Ann. Probab. 15(3), 1062–1071 (1987)

Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple, Volume 1991 of Probability and its Applications. Birkhäuser, Basel (1992)

Kwapień, S., Szulga, J.: Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces. Ann. Probab. 19(1), 369–379 (1991)

Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Classics in Mathematics. Springer, Berlin (2011).. (Isoperimetry and processes, Reprint of the 1991 edition)

Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Stud. Math. 58(1), 45–90 (1976)

McConnell, T., Taqqu, M.: Decoupling of Banach-valued multilinear forms in independent symmetric Banach-valued random variables. Probab. Theory Relat. Fields 75(4), 499–507 (1987)

McConnell, T.R., Taqqu, M.S.: Decoupling inequalities for multilinear forms in independent symmetric random variables. Ann. Probab. 14(3), 943–954 (1986)

Naor, A.: An introduction to the Ribe program. Jpn. J. Math. 7(2), 167–233 (2012)

O’Donnell, R., Zhao, Y.: Polynomial bounds for decoupling, with applications. In: 31st Conference on Computational Complexity, Volume 50 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 24, 18. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016)

Pisier, G.: Some results on Banach spaces without local unconditional structure. Compos. Math. 37(1), 3–19 (1978)

Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and Analysis. Springer, Berlin (1986)

Rzeszut, M., Wojciechowski, M.: Hoeffding decomposition in $$H^1$$ spaces. Math. Z. 298(3–4), 1113–1141 (2021)

Seigner, J.A.: Rademacher variables in connection with complex scalars. Acta Math. Univ. Comenian. (NS) 66(2), 329–336 (1997)

Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Volume 38 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1989)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem