Mostrar el registro sencillo del ítem
dc.contributor.author | Ontañon, Clara | es_ES |
dc.contributor.author | Ojinaga, Mikel | es_ES |
dc.contributor.author | Larregla, Santiago | es_ES |
dc.contributor.author | Zabala, Joseba Andoni | es_ES |
dc.contributor.author | Reva, Anastasiia | es_ES |
dc.contributor.author | Losa, Alba | es_ES |
dc.contributor.author | Heribia, Rosario | es_ES |
dc.contributor.author | Bertacca, Sofia | es_ES |
dc.contributor.author | Sanahuja, Esmeralda | es_ES |
dc.contributor.author | Alfaro Fernández, Ana Olvido | es_ES |
dc.contributor.author | Font San Ambrosio, Maria Isabel | es_ES |
dc.contributor.author | Corachán Valencia, Lorena | es_ES |
dc.contributor.author | Pallás Benet, Vicente | es_ES |
dc.contributor.author | SANCHEZ NAVARRO, JESUS ANGEL | es_ES |
dc.date.accessioned | 2023-12-21T19:01:43Z | |
dc.date.available | 2023-12-21T19:01:43Z | |
dc.date.issued | 2023-09-18 | es_ES |
dc.identifier.issn | 0929-1873 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201039 | |
dc.description.abstract | [EN] An isolate of chili pepper mild mottle virus (CPMMV-Sp; GenBank OQ920979) with a 99% identity to CPMMV (GenBank MN164455.1) was found in symptomatic pepper plants in Spain. RACE analysis, performed using a stem-loop primer developed in this study to prime at the end of the introduced poly(A)/(U) tail, revealed the presence of an extra 22 nt at the 5' end, starting with a cytosine, which were essential to generate infectious clones. However, the 5' terminal cytosine was dispensable for initiating the infection. The design of two specific digoxigenin riboprobes targeting the more divergent area of CPMMV-Sp, compared to the closely related bell pepper mottle virus (BPeMV) (identity percentage of 80.6% and 75.8%, respectively), showed that both probes specifically detected CPMMV-Sp when the hybridization was performed at 68oC and 60oC, respectively. However, the BPeMV probe, targeting a region with an 89.4% identity percentage to CPMMV-Sp, showed cross-hybridization at 60oC but not at 68oC. The comparison of the detection limits between molecular hybridization and RT-PCR techniques revealed that the former was 125 times less sensitive than RT-PCR. The analysis of the vertical transmission of CPMMV-Sp using seeds from naturally or mechanically infected pepper plants revealed a transmission percentage ranging from 0.9% to 8.5%. Finally, the analysis of the resistance of capsicum species carrying different alleles of the L gene (L1, L2, L3, and L4) revealed that varieties with the L1 gene were infected by CPMMV-Sp (20-40% of inoculated plants), while varieties with the L2, L3, and L4 genes were resistant. | es_ES |
dc.description.sponsorship | This work was supported by grants PID2020-115571RB-100 and TED2021-131949B-I00 from the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). Project 20-00032-VIRUSPIM from Dept. of Environment, Territorial Planning, Agriculture and Fisheries (Basque Government). Mikel Ojinaga was the recipient of a PhD contract "Introduction of Resistance to Tobamovirus and other Viruses in Landraces of Gernika Pepper and Ibarra Chili Pepper" (Order of 24 October 2018 of the Minister of Economic Development and Competitiveness of the Basque Government). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | European Journal of Plant Pathology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Tobamovirus | es_ES |
dc.subject | Non-radioactive molecular hybridization | es_ES |
dc.subject | Seed transmission | es_ES |
dc.subject | Infectious clones | es_ES |
dc.subject | L resistance genes | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10658-023-02765-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115571RB-I00/ES/LA MODIFICACION N6-METILADENOSINA (M6A) DEL RNA Y EL DIRECCIONAMIENTO DUAL A CLOROPLASTOS Y MITOCONDRIAS COMO MECANISMOS REGULADORES EN LA BIOLOGIA DE LOS VIRUS RNA DE PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//20-00032-VIRUSPIM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-131949B-I00/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Ontañon, C.; Ojinaga, M.; Larregla, S.; Zabala, JA.; Reva, A.; Losa, A.; Heribia, R.... (2023). Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes. European Journal of Plant Pathology. 1-18. https://doi.org/10.1007/s10658-023-02765-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10658-023-02765-1 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\505626 | es_ES |
dc.contributor.funder | Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Al-Tamimi, N., Kawas, H., & Mansour, A. (2010). Seed Transmission Viruses in Squash Seeds (Cucurbita pepo) in Southern Syria and Jordan Valley. Jordan Journal of Agricultural Sciences, 5(4), 497–506. https://journals.ju.edu.jo/JJAS/article/view/864. | es_ES |
dc.description.references | Bhat, A.I. & Rao, G.P. (2020). Transmission Through Seeds. In: Characterization of Plant Viruses. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_10 | es_ES |
dc.description.references | Davino, S., Caruso, A. G., Bertacca, S., Barone, S., & Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants, 9(11), 1–13. https://doi.org/10.3390/PLANTS9111615 | es_ES |
dc.description.references | Demski, J. W. (1981). Tobacco Mosaic Virus Is Seedborne in Pimiento Peppers. Plant Disease, 65(9), 723. https://doi.org/10.1094/PD-65-723 | es_ES |
dc.description.references | Di Dato, F., Parisi, M., Cardi, T., & Tripodi, P. (2015). Genetic diversity and assessment of markers linked to resistance and pungency genes in Capsicum germplasm. Euphytica, 204(1), 103–119. | es_ES |
dc.description.references | Dombrovsky, A., Smith, E., Dombrovsky, A., & Smith, E. (2017). Seed Transmission of Tobamoviruses: Aspects of Global Disease Distribution. Advances in Seed Biology. https://doi.org/10.5772/INTECHOPEN.70244 | es_ES |
dc.description.references | Gallois, J. L., Moury, B., & German-Retana, S. (2018). Role of the genetic background in resistance to plant viruses. International Journal of Molecular Sciences, 19(10), 2856. https://doi.org/10.3390/ijms19102856 | es_ES |
dc.description.references | Genda, Y., Kanda, A., Hamada, H., Sato, K., Ohnishi, J., & Tsuda, S. (2007). Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology, 97(7), 787–793. | es_ES |
dc.description.references | Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., & Tsuda, S. (2011). Immunolocalization of Pepper mild mottle virus in developing seeds and seedlings of Capsicum annuum. Journal of General Plant Pathology, 77(3), 201–208. https://doi.org/10.1007/s10327-011-0307-0 | es_ES |
dc.description.references | Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., Ohnishi, J., & Tsuda, S. (2005). Immunolocalization of Pepper mild mottle virus in Capsicum annuum seeds. Journal of General Plant Pathology, 71(3), 238–242. https://doi.org/10.1007/S10327-005-0189-0 | es_ES |
dc.description.references | Ghodoum, P. M. H., & Keshavarz-Tohid, V. (2020). Identification and phylogenetic analysis of a tobamovirus causing hibiscus (Hibiscus rosa-sinensis L.) mosaic disease in Iran. Journal of Plant Pathology, 102(3), 813–824. https://doi.org/10.1007/S42161-020-00510-9/TABLES/3 | es_ES |
dc.description.references | Gniffke, P. A., Shieh, S. C., Lin, S. W., Sheu, Z. M., Chen, J. R., Ho, F. I., et al. (2013). Pepper research and breeding at AVRDC - The World Vegetable Center. Breakthroughs in the genetics and breeding of capsicum and eggplant | es_ES |
dc.description.references | Proceedings of the XV EUCARPIA meeting. https://worldveg.tind.io/record/50155. Accessed 2-4 Sept 2013 | es_ES |
dc.description.references | Groth-Helms, D., Juszczak, S., & Adkins, S. (2022). First report of Chili pepper mild mottle virus in calibrachoa in the United States. New Disease Reports, 46(1), e12120. https://doi.org/10.1002/NDR2.12120 | es_ES |
dc.description.references | Gullino, M., Albajes, R., & Nicot, P. (2020). Integrated Pest and Disease Management in Greenhouse Crops. Springer International Publishing AG, 691 p., https://doi.org/10.1007/978-3-030-22304-5 | es_ES |
dc.description.references | Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F., & Pallás, V. (2005a). Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or “polyprobe.” Journal of Virological Methods, 124(1–2), 49–55. https://doi.org/10.1016/j.jviromet.2004.11.003 | es_ES |
dc.description.references | Herranz, M. C., Sanchez-Navarro, J. A., Sauri, A., Mingarro, I., & Pallas, V. (2005b). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 339(1), 31–41. https://doi.org/10.1016/j.virol.2005.05.020 | es_ES |
dc.description.references | HuiJie, W., BiXia, Q., HongYun, C., Bin, P., JianHe, C., & QinSheng, G. (2011). The rate of seed contamination and transmission of Cucumber green mottle mosaic virus in watermelon and melon. Scientia Agricultura Sinica, 44(7), 1527–1532. | es_ES |
dc.description.references | Hull, R. (2002). Matthews’ Plant Virology (Vol. 4th). Academic Press. | es_ES |
dc.description.references | Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54, 55–78. https://doi.org/10.1146/ANNUREV-PHYTO-080615-100217 | es_ES |
dc.description.references | Jeong, J., Ju, H., & Noh, J. (2014). A Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20(3), 173–181. https://doi.org/10.5423/rpd.2014.20.3.173 | es_ES |
dc.description.references | Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/BIOINFORMATICS/BTS199 | es_ES |
dc.description.references | Kenyon, L., Kumar, S., Tsai, W. S., & Hughes, J. A. (2014). Virus diseases of peppers (Capsicum spp.) and their control. Advances in Virus Research, 90, 297–354. https://doi.org/10.1016/B978-0-12-801246-8.00006-8 | es_ES |
dc.description.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | es_ES |
dc.description.references | Lee, H. K., Kim, S. Y., Yang, H. J., Lee, D. S., Kwon, B., Lee, D. Y., et al. (2020). The Detection of Plant Viruses in Korean Ginseng (Panax ginseng) through RNA Sequencing. The Plant Pathology Journal, 36(6), 643–650. https://doi.org/10.5423/PPJ.NT.07.2020.0137 | es_ES |
dc.description.references | Li, Y., Tan, G., Lan, P., Zhang, A., Liu, Y., Li, R., & Li, F. (2018). Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers. Journal of Virological Methods, 259, 122–128. https://doi.org/10.1016/j.jviromet.2018.06.012 | es_ES |
dc.description.references | Mckinney, H. H. (1952). Two strains of Tobacco-mosaic virus, one of which is seed-borne in an etch-immune pungent Pepper. Plant Disease Reporter, 36(5), 184–187. | es_ES |
dc.description.references | Montes, N., & Pagán, I. (2019). Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. Plants, 8(9), 304. https://doi.org/10.3390/PLANTS8090304 | es_ES |
dc.description.references | Moury, B., & Verdin, E. (2012). Viruses of pepper crops in the Mediterranean basin: A remarkable stasis. Advances in Virus Research, 84, 127–162. https://doi.org/10.1016/B978-0-12-394314-9.00004-X | es_ES |
dc.description.references | Nagai, Y. (1981). Control of mosaic diseases of tomato and sweet pepper caused by Tobacco mosaic virus. Special Bulletin of the Chiba Prefectural Agricultural Experiment Station, 9, 1–109. https://cir.nii.ac.jp/crid/1571135650268603264. | es_ES |
dc.description.references | Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998a). Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods in Molecular Biology (Clifton. N.J.), 81, 461–468. https://doi.org/10.1385/0-89603-385-6:461 | es_ES |
dc.description.references | Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998b). Detection of Plant RNA Viruses by Nonisotopic Dot-Blot Hybridization. In Plant Virology Protocols 81, 461–468. Humana Press. https://doi.org/10.1385/0-89603-385-6:461 | es_ES |
dc.description.references | Pallas, V., Sanchez-Navarro, J. A., & James, D. (2018). Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Frontiers in Microbiology, 9, 2087. https://doi.org/10.3389/fmicb.2018.02087 | es_ES |
dc.description.references | Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., & Mingarro, I. (2014). The Tobacco Mosaic Virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016–3026. https://doi.org/10.1128/jvi.03648-13 | es_ES |
dc.description.references | Peiró, A., Pallás, V., & Sánchez-Navarro, J. A. (2012). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132, 469–475. https://doi.org/10.1007/s10658-011-9893-0 | es_ES |
dc.description.references | Reingold, V., Lachman, O., Belausov, E., Koren, A., Mor, N., & Dombrovsky, A. (2016). Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Annals of Applied Biology, 168(1), 29–40. https://doi.org/10.1111/AAB.12238 | es_ES |
dc.description.references | Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040454 | es_ES |
dc.description.references | Salem, N. M., Abumuslem, M., Turina, M., Samarah, N., Sulaiman, A., Abu-Irmaileh, B., & Ata, Y. (2022). New Weed Hosts for Tomato Brown Rugose Fruit Virus in Wild Mediterranean Vegetation. Plants, 11(17), 2287. https://doi.org/10.3390/PLANTS11172287/S1 | es_ES |
dc.description.references | Salgado-Ortíz, H., De La Torre-Almaraz, R., Sánchez-Navarro, J. Á., & Pallás, V. (2020). Identification and genomic characterization of a novel tobamovirus from prickly pear cactus. Archives of Virology, 165(3), 781–784. https://doi.org/10.1007/s00705-020-04528-3 | es_ES |
dc.description.references | Sanchez-Navarro, J. A., Aparicio, F., Rowhani, A., & Pallás, V. (1998). Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of prunus necrotic ringspot virus in herbaceous and Prunus hosts. Plant Pathology, 47(6), 780–786. https://doi.org/10.1046/j.1365-3059.1998.00301.x | es_ES |
dc.description.references | Sanchez-Navarro, J. A., Canizares, M. C., Cano, E. A., & Pallas, V. (1999). Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. Journal of Virological Methods, 82(2), 167–175. https://doi.org/10.1016/S0166-0934(99)00097-X | es_ES |
dc.description.references | Sanchez-Navarro, J. A., Cano, E. A., & Pallas, V. (1996). Non-radioactive molecular hybridization detection of carnation mottle virus in infected carnations and its comparison to serological and biological techniques. Plant Pathology, 45(2), 375–382. https://doi.org/10.1046/j.1365-3059.1996.d01-1.x | es_ES |
dc.description.references | Sanchez-Navarro, J. A., Cooper, C. N., & Pallas, V. (2018). Polyvalent detection of members of the genus potyvirus by Molecular Hybridization using a genus-probe. Phytopathology, 108, 1522–1529. https://doi.org/10.1094/phyto-04-18-0146-r | es_ES |
dc.description.references | Sánchez-Navarro, J. A., Corachán, L., Font, I., Alfaro-Fernández, A., & Pallás, V. (2019). Polyvalent detection of twelve viruses and four viroids affecting tomato by using a unique polyprobe. European Journal of Plant Pathology, 155, 361–368. https://doi.org/10.1007/s10658-019-01763-6 | es_ES |
dc.description.references | Sandra, N., Tripathi, A., Dikshit, H. K., Mandal, B., & Jain, R. K. (2020). Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts. Virus Research, 280, 197903. https://doi.org/10.1016/J.VIRUSRES.2020.197903 | es_ES |
dc.description.references | Sastry, K. S. (2013). 2013. Springer. | es_ES |
dc.description.references | Simmons, H. E., & Munkvold, G. P. (2014). Seed transmission in the Potyviridae. Global Perspectives on the Health of Seeds and Plant Propagation Material, 6, 3–15. https://doi.org/10.1007/978-94-017-9389-6_1/TABLES/1 | es_ES |
dc.description.references | Singh, D., & Mathur, S. B. (2004). Histopathology of Seed-Borne Infections. Histopathology of Seed-Borne Infections. https://doi.org/10.1201/9781420038170 | es_ES |
dc.description.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. | es_ES |
dc.description.references | Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y., et al. (2008). Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. TAG. Theoretical and Applied Genetics, 117(7), 1107–1118. https://doi.org/10.1007/S00122-008-0848-6 | es_ES |
dc.description.references | Tomita, R., Sekine, K. T., Mizumoto, H., Sakamoto, M., Murai, J., Kiba, A., et al. (2011). Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Molecular Plant-Microbe interactions, 24(1), 108–117. https://doi.org/10.1094/MPMI-06-10-0127 | es_ES |
dc.description.references | Tosic, M., Sutic, D., & Pesic, Z. (1980). Transmission of tobacco mosaic-virus through pepper (Capsicum-annuum-l.) seed. Phytopathologische Zeitschrift-Journal of Phytopathology, 97(1), 10–13. | es_ES |
dc.description.references | Van Der Want, J. P. H., & Dijkstra, J. (2006). A history of plant virology. Archives of Virology, 151(8), 1467–1498. https://doi.org/10.1007/S00705-006-0782-3 | es_ES |
dc.description.references | Vélez-Olmedo, J. B., Fribourg, C. E., Melo, F. L., Nagata, T., de Oliveira, A. S., & Resende, R. O. (2021). Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. Journal of General Virology, 102(2), 001524. https://doi.org/10.1099/JGV.0.001524/CITE/REFWORKS | es_ES |
dc.description.references | Yeku, O., & Frohman, M. A. (2011). Rapid amplification of cDNA ends (RACE). Methods in Molecular Biology, 703, 107–122. https://doi.org/10.1007/978-1-59745-248-9_8 | es_ES |
dc.description.references | Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Alfenas-Zerbini, P., Dempsey, D. M., Dutilh, B. E., García, M. L., Curtis Hendrickson, R., Junglen, S., Krupovic, M., Kuhn, J. H., Lambert, A. J., Łobocka, M., Oksanen, H. M., Orton, R. J., Robertson, D. L., Rubino, L., … Zerbini, F. M. (2022). Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Archives of Virology. https://doi.org/10.1007/s00705-022-05516-5 | es_ES |