- -

Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes

Mostrar el registro completo del ítem

Ontañon, C.; Ojinaga, M.; Larregla, S.; Zabala, JA.; Reva, A.; Losa, A.; Heribia, R.... (2023). Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes. European Journal of Plant Pathology. 1-18. https://doi.org/10.1007/s10658-023-02765-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201039

Ficheros en el ítem

Metadatos del ítem

Título: Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes
Autor: Ontañon, Clara Ojinaga, Mikel Larregla, Santiago Zabala, Joseba Andoni Reva, Anastasiia Losa, Alba Heribia, Rosario Bertacca, Sofia Sanahuja, Esmeralda Alfaro Fernández, Ana Olvido Font San Ambrosio, Maria Isabel Corachán Valencia, Lorena Pallás Benet, Vicente SANCHEZ NAVARRO, JESUS ANGEL
Entidad UPV: Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] An isolate of chili pepper mild mottle virus (CPMMV-Sp; GenBank OQ920979) with a 99% identity to CPMMV (GenBank MN164455.1) was found in symptomatic pepper plants in Spain. RACE analysis, performed using a stem-loop ...[+]
Palabras clave: Tobamovirus , Non-radioactive molecular hybridization , Seed transmission , Infectious clones , L resistance genes
Derechos de uso: Reconocimiento (by)
Fuente:
European Journal of Plant Pathology. (issn: 0929-1873 )
DOI: 10.1007/s10658-023-02765-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10658-023-02765-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115571RB-I00/ES/LA MODIFICACION N6-METILADENOSINA (M6A) DEL RNA Y EL DIRECCIONAMIENTO DUAL A CLOROPLASTOS Y MITOCONDRIAS COMO MECANISMOS REGULADORES EN LA BIOLOGIA DE LOS VIRUS RNA DE PLANTAS/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//20-00032-VIRUSPIM/
info:eu-repo/grantAgreement/AEI//TED2021-131949B-I00/
Agradecimientos:
This work was supported by grants PID2020-115571RB-100 and TED2021-131949B-I00 from the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). Project 20-00032-VIRUSPIM from Dept. ...[+]
Tipo: Artículo

References

Al-Tamimi, N., Kawas, H., & Mansour, A. (2010). Seed Transmission Viruses in Squash Seeds (Cucurbita pepo) in Southern Syria and Jordan Valley. Jordan Journal of Agricultural Sciences, 5(4), 497–506. https://journals.ju.edu.jo/JJAS/article/view/864.

Bhat, A.I. & Rao, G.P. (2020). Transmission Through Seeds. In: Characterization of Plant Viruses. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_10

Davino, S., Caruso, A. G., Bertacca, S., Barone, S., & Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants, 9(11), 1–13. https://doi.org/10.3390/PLANTS9111615 [+]
Al-Tamimi, N., Kawas, H., & Mansour, A. (2010). Seed Transmission Viruses in Squash Seeds (Cucurbita pepo) in Southern Syria and Jordan Valley. Jordan Journal of Agricultural Sciences, 5(4), 497–506. https://journals.ju.edu.jo/JJAS/article/view/864.

Bhat, A.I. & Rao, G.P. (2020). Transmission Through Seeds. In: Characterization of Plant Viruses. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_10

Davino, S., Caruso, A. G., Bertacca, S., Barone, S., & Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants, 9(11), 1–13. https://doi.org/10.3390/PLANTS9111615

Demski, J. W. (1981). Tobacco Mosaic Virus Is Seedborne in Pimiento Peppers. Plant Disease, 65(9), 723. https://doi.org/10.1094/PD-65-723

Di Dato, F., Parisi, M., Cardi, T., & Tripodi, P. (2015). Genetic diversity and assessment of markers linked to resistance and pungency genes in Capsicum germplasm. Euphytica, 204(1), 103–119.

Dombrovsky, A., Smith, E., Dombrovsky, A., & Smith, E. (2017). Seed Transmission of Tobamoviruses: Aspects of Global Disease Distribution. Advances in Seed Biology. https://doi.org/10.5772/INTECHOPEN.70244

Gallois, J. L., Moury, B., & German-Retana, S. (2018). Role of the genetic background in resistance to plant viruses. International Journal of Molecular Sciences, 19(10), 2856. https://doi.org/10.3390/ijms19102856

Genda, Y., Kanda, A., Hamada, H., Sato, K., Ohnishi, J., & Tsuda, S. (2007). Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology, 97(7), 787–793.

Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., & Tsuda, S. (2011). Immunolocalization of Pepper mild mottle virus in developing seeds and seedlings of Capsicum annuum. Journal of General Plant Pathology, 77(3), 201–208. https://doi.org/10.1007/s10327-011-0307-0

Genda, Y., Sato, K., Nunomura, O., Hirabayashi, T., Ohnishi, J., & Tsuda, S. (2005). Immunolocalization of Pepper mild mottle virus in Capsicum annuum seeds. Journal of General Plant Pathology, 71(3), 238–242. https://doi.org/10.1007/S10327-005-0189-0

Ghodoum, P. M. H., & Keshavarz-Tohid, V. (2020). Identification and phylogenetic analysis of a tobamovirus causing hibiscus (Hibiscus rosa-sinensis L.) mosaic disease in Iran. Journal of Plant Pathology, 102(3), 813–824. https://doi.org/10.1007/S42161-020-00510-9/TABLES/3

Gniffke, P. A., Shieh, S. C., Lin, S. W., Sheu, Z. M., Chen, J. R., Ho, F. I., et al. (2013). Pepper research and breeding at AVRDC - The World Vegetable Center. Breakthroughs in the genetics and breeding of capsicum and eggplant

Proceedings of the XV EUCARPIA meeting. https://worldveg.tind.io/record/50155. Accessed 2-4 Sept 2013

Groth-Helms, D., Juszczak, S., & Adkins, S. (2022). First report of Chili pepper mild mottle virus in calibrachoa in the United States. New Disease Reports, 46(1), e12120. https://doi.org/10.1002/NDR2.12120

Gullino, M., Albajes, R., & Nicot, P. (2020). Integrated Pest and Disease Management in Greenhouse Crops. Springer International Publishing AG, 691 p., https://doi.org/10.1007/978-3-030-22304-5

Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F., & Pallás, V. (2005a). Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or “polyprobe.” Journal of Virological Methods, 124(1–2), 49–55. https://doi.org/10.1016/j.jviromet.2004.11.003

Herranz, M. C., Sanchez-Navarro, J. A., Sauri, A., Mingarro, I., & Pallas, V. (2005b). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 339(1), 31–41. https://doi.org/10.1016/j.virol.2005.05.020

HuiJie, W., BiXia, Q., HongYun, C., Bin, P., JianHe, C., & QinSheng, G. (2011). The rate of seed contamination and transmission of Cucumber green mottle mosaic virus in watermelon and melon. Scientia Agricultura Sinica, 44(7), 1527–1532.

Hull, R. (2002). Matthews’ Plant Virology (Vol. 4th). Academic Press.

Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54, 55–78. https://doi.org/10.1146/ANNUREV-PHYTO-080615-100217

Jeong, J., Ju, H., & Noh, J. (2014). A Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20(3), 173–181. https://doi.org/10.5423/rpd.2014.20.3.173

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/BIOINFORMATICS/BTS199

Kenyon, L., Kumar, S., Tsai, W. S., & Hughes, J. A. (2014). Virus diseases of peppers (Capsicum spp.) and their control. Advances in Virus Research, 90, 297–354. https://doi.org/10.1016/B978-0-12-801246-8.00006-8

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Lee, H. K., Kim, S. Y., Yang, H. J., Lee, D. S., Kwon, B., Lee, D. Y., et al. (2020). The Detection of Plant Viruses in Korean Ginseng (Panax ginseng) through RNA Sequencing. The Plant Pathology Journal, 36(6), 643–650. https://doi.org/10.5423/PPJ.NT.07.2020.0137

Li, Y., Tan, G., Lan, P., Zhang, A., Liu, Y., Li, R., & Li, F. (2018). Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers. Journal of Virological Methods, 259, 122–128. https://doi.org/10.1016/j.jviromet.2018.06.012

Mckinney, H. H. (1952). Two strains of Tobacco-mosaic virus, one of which is seed-borne in an etch-immune pungent Pepper. Plant Disease Reporter, 36(5), 184–187.

Montes, N., & Pagán, I. (2019). Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance. Plants, 8(9), 304. https://doi.org/10.3390/PLANTS8090304

Moury, B., & Verdin, E. (2012). Viruses of pepper crops in the Mediterranean basin: A remarkable stasis. Advances in Virus Research, 84, 127–162. https://doi.org/10.1016/B978-0-12-394314-9.00004-X

Nagai, Y. (1981). Control of mosaic diseases of tomato and sweet pepper caused by Tobacco mosaic virus. Special Bulletin of the Chiba Prefectural Agricultural Experiment Station, 9, 1–109. https://cir.nii.ac.jp/crid/1571135650268603264.

Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998a). Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods in Molecular Biology (Clifton. N.J.), 81, 461–468. https://doi.org/10.1385/0-89603-385-6:461

Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998b). Detection of Plant RNA Viruses by Nonisotopic Dot-Blot Hybridization. In Plant Virology Protocols 81, 461–468. Humana Press. https://doi.org/10.1385/0-89603-385-6:461

Pallas, V., Sanchez-Navarro, J. A., & James, D. (2018). Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Frontiers in Microbiology, 9, 2087. https://doi.org/10.3389/fmicb.2018.02087

Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., & Mingarro, I. (2014). The Tobacco Mosaic Virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016–3026. https://doi.org/10.1128/jvi.03648-13

Peiró, A., Pallás, V., & Sánchez-Navarro, J. A. (2012). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132, 469–475. https://doi.org/10.1007/s10658-011-9893-0

Reingold, V., Lachman, O., Belausov, E., Koren, A., Mor, N., & Dombrovsky, A. (2016). Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Annals of Applied Biology, 168(1), 29–40. https://doi.org/10.1111/AAB.12238

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040454

Salem, N. M., Abumuslem, M., Turina, M., Samarah, N., Sulaiman, A., Abu-Irmaileh, B., & Ata, Y. (2022). New Weed Hosts for Tomato Brown Rugose Fruit Virus in Wild Mediterranean Vegetation. Plants, 11(17), 2287. https://doi.org/10.3390/PLANTS11172287/S1

Salgado-Ortíz, H., De La Torre-Almaraz, R., Sánchez-Navarro, J. Á., & Pallás, V. (2020). Identification and genomic characterization of a novel tobamovirus from prickly pear cactus. Archives of Virology, 165(3), 781–784. https://doi.org/10.1007/s00705-020-04528-3

Sanchez-Navarro, J. A., Aparicio, F., Rowhani, A., & Pallás, V. (1998). Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of prunus necrotic ringspot virus in herbaceous and Prunus hosts. Plant Pathology, 47(6), 780–786. https://doi.org/10.1046/j.1365-3059.1998.00301.x

Sanchez-Navarro, J. A., Canizares, M. C., Cano, E. A., & Pallas, V. (1999). Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. Journal of Virological Methods, 82(2), 167–175. https://doi.org/10.1016/S0166-0934(99)00097-X

Sanchez-Navarro, J. A., Cano, E. A., & Pallas, V. (1996). Non-radioactive molecular hybridization detection of carnation mottle virus in infected carnations and its comparison to serological and biological techniques. Plant Pathology, 45(2), 375–382. https://doi.org/10.1046/j.1365-3059.1996.d01-1.x

Sanchez-Navarro, J. A., Cooper, C. N., & Pallas, V. (2018). Polyvalent detection of members of the genus potyvirus by Molecular Hybridization using a genus-probe. Phytopathology, 108, 1522–1529. https://doi.org/10.1094/phyto-04-18-0146-r

Sánchez-Navarro, J. A., Corachán, L., Font, I., Alfaro-Fernández, A., & Pallás, V. (2019). Polyvalent detection of twelve viruses and four viroids affecting tomato by using a unique polyprobe. European Journal of Plant Pathology, 155, 361–368. https://doi.org/10.1007/s10658-019-01763-6

Sandra, N., Tripathi, A., Dikshit, H. K., Mandal, B., & Jain, R. K. (2020). Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts. Virus Research, 280, 197903. https://doi.org/10.1016/J.VIRUSRES.2020.197903

Sastry, K. S. (2013). 2013. Springer.

Simmons, H. E., & Munkvold, G. P. (2014). Seed transmission in the Potyviridae. Global Perspectives on the Health of Seeds and Plant Propagation Material, 6, 3–15. https://doi.org/10.1007/978-94-017-9389-6_1/TABLES/1

Singh, D., & Mathur, S. B. (2004). Histopathology of Seed-Borne Infections. Histopathology of Seed-Borne Infections. https://doi.org/10.1201/9781420038170

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y., et al. (2008). Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. TAG. Theoretical and Applied Genetics, 117(7), 1107–1118. https://doi.org/10.1007/S00122-008-0848-6

Tomita, R., Sekine, K. T., Mizumoto, H., Sakamoto, M., Murai, J., Kiba, A., et al. (2011). Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Molecular Plant-Microbe interactions, 24(1), 108–117. https://doi.org/10.1094/MPMI-06-10-0127

Tosic, M., Sutic, D., & Pesic, Z. (1980). Transmission of tobacco mosaic-virus through pepper (Capsicum-annuum-l.) seed. Phytopathologische Zeitschrift-Journal of Phytopathology, 97(1), 10–13.

Van Der Want, J. P. H., & Dijkstra, J. (2006). A history of plant virology. Archives of Virology, 151(8), 1467–1498. https://doi.org/10.1007/S00705-006-0782-3

Vélez-Olmedo, J. B., Fribourg, C. E., Melo, F. L., Nagata, T., de Oliveira, A. S., & Resende, R. O. (2021). Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. Journal of General Virology, 102(2), 001524. https://doi.org/10.1099/JGV.0.001524/CITE/REFWORKS

Yeku, O., & Frohman, M. A. (2011). Rapid amplification of cDNA ends (RACE). Methods in Molecular Biology, 703, 107–122. https://doi.org/10.1007/978-1-59745-248-9_8

Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Alfenas-Zerbini, P., Dempsey, D. M., Dutilh, B. E., García, M. L., Curtis Hendrickson, R., Junglen, S., Krupovic, M., Kuhn, J. H., Lambert, A. J., Łobocka, M., Oksanen, H. M., Orton, R. J., Robertson, D. L., Rubino, L., … Zerbini, F. M. (2022). Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Archives of Virology. https://doi.org/10.1007/s00705-022-05516-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem