- -

Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Arellano, Ignacio es_ES
dc.contributor.author Zarzo Castelló, Manuel es_ES
dc.contributor.author Aransay, Cristina es_ES
dc.contributor.author Gonzalez de Aspuru, Sara es_ES
dc.contributor.author Laborda Macario, Jaime es_ES
dc.contributor.author Perles, Angel es_ES
dc.date.accessioned 2023-12-22T19:01:52Z
dc.date.available 2023-12-22T19:01:52Z
dc.date.issued 2023-03-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201081
dc.description.abstract [EN] The quality and quantity of thermo-hygrometric data are essential to carry out an appropriate assessment of the microclimate from a preventive conservation standpoint in those spaces where the artefacts to be preserved are located. These analyses are fundamental for long-term preventive conservation plan to assess chemical, biological or fracture risks. However, many small and medium-sized museums as well as heritage buildings have only a limited amount of historical data, with various problems that hinder the evaluation of microclimatic conditions. Two of the most common problems are short monitoring time periods, usually less than one year, and low sampling rates of measurements. In many of these situations, guidelines such as the European standard EN 15757:2010 cannot be applied because they require a monitoring period of at least 13 months and a minimum sampling frequency of one measurement per hour. In addition to these issues, there are other drawbacks such as missing values or lack of regularity in data collection. This paper proposes a procedure for the reconstruction of historical thermo-hygrometric data using multivariate statistical methods. The methodology allows the arrangement of long historical series of sufficient quality, enabling museums to restore their datasets for further analysis regarding the application of guidelines for preventive conservation. The methodology has been validated on the basis of real data. The application of the European standard EN 15757:2010 is presented as a practical example of the procedure using historical data collected at a partner museum of the H2020 CollectionCare project, together with data currently being collected for some months by a set of wireless sensor nodes. es_ES
dc.description.sponsorship his research was funded by the European Union's Horizon 2020 research and innovation program under Grant agreement No. 814624 es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof Heritage Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Preventive conservation es_ES
dc.subject Microclimate monitoring es_ES
dc.subject Cultural heritage es_ES
dc.subject Multivariate statistics es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40494-023-00888-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/814624/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Díaz-Arellano, I.; Zarzo Castelló, M.; Aransay, C.; Gonzalez De Aspuru, S.; Laborda Macario, J.; Perles, A. (2023). Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series. Heritage Science. 11(1):1-20. https://doi.org/10.1186/s40494-023-00888-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40494-023-00888-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2050-7445 es_ES
dc.relation.pasarela S\484881 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Camuffo D. Microclimate for cultural heritage—conservation, restoration and maintenance of indoor and outdoor monuments. 2nd ed. Amsterdam: Elsevier; 2013. es_ES
dc.description.references Pavlogeorgatos G. Environmental parameters in museums. Build Environ. 2003;38:1457–62. es_ES
dc.description.references UNI 10829. Works of art of historical importance. Ambient conditions for the conservation. Measurement and Analysis. 1999. es_ES
dc.description.references Culturali MPIBELA. Atto di Indirizzo Sui Criteri Tecnico-Scientifici e Sugli Standard di Funzionamento e Sviluppo dei Musei. Rome, Italy. 2001. es_ES
dc.description.references Staniforth S, Hayes B, Bullock L. Appropriate technologies for relative humidity control for museum collections housed in historic buildings. Stud Conserv. 1994;39:123–8. es_ES
dc.description.references Blades N, Rice K. Conservation heating and energy efficiency at the national trust: theory and practice. In: Developments in climate control of historic buildings. Linderhof Palace; 2011. pp. 13–19. es_ES
dc.description.references Broström T, Vyhlídal T, Simeunovic G, Larsen PK, Zítek P. Evaluation of different approaches of microclimate control in cultural heritage buildings. Climate for collections—standards and uncertainties postprints of the Munich Climate Conference 7 to 9 November 2012. 2013. pp. 105–15. es_ES
dc.description.references Neuhaus E. A critical look at HVAC-systems in the museum environment. Climate for collections—standards and uncertainties. Postprints of the Munich Climate Conference, 7 to 9 November 2012. 2012. es_ES
dc.description.references Taylor T. Preservation of cultural heritage: the design of low-energy archival storage. In: Bahei-El-Din Y, Hassan M, editors. Advanced technologies for sustainable systems: selected contributions from the international conference on Sustainable Vital Technologies in Engineering and Informatics, BUE ACE1 2016, 7–9 November 2016, Cairo, Egypt. Cham: Springer International Publishing; 2017. p. 11–8. es_ES
dc.description.references Bratasz Ł. Allowable microclimatic variations in museums and historic buildings: reviewing the guidelines. Climate for collections—standards and uncertainties. Postprints of the Munich Climate Conference, 7 to 9 November 2012. 2013;11–19. es_ES
dc.description.references Michalski S. The ideal climate, risk management, the ASHRAE Chapter, proofed fluctuations, and toward a full risk analysis model. In: Experts roundtable on sustainable climate management strategies. 2007. p. 1–19. es_ES
dc.description.references EN 15757:2010. Conservation of cultural property—specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardization; 2010. es_ES
dc.description.references ASHRAE American Society of Heating, Refrigeration and Air-Conditioning Engineers. Chapter 24: Museums, galleries, archives, and libraries. In: ASHRAE handbook—HVAC applications, 2019. 2007. es_ES
dc.description.references Silva HE, Coelho GBA, Henriques FMA. Climate monitoring in World Heritage List buildings with low-cost data loggers: the case of the Jerónimos Monastery in Lisbon (Portugal). J Build Eng. 2020;28:24–35. es_ES
dc.description.references García-Diego F-J, Zarzo M. Microclimate monitoring by multivariate statistical control: the renaissance frescoes of the Cathedral of Valencia (Spain). J Cult Herit. 2010;11:339–44. es_ES
dc.description.references Merello P, García-Diego F-J, Zarzo M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem Cent J. 2012;6:145. es_ES
dc.description.references Klein LJ, Bermudez SA, Schrott AG, Tsukada M, Dionisi-Vici P, Kargere L, Marianno F, Hamann HF, López V, Leona M. Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors. 2017;17:1998. es_ES
dc.description.references Aste N, Adhikari RS, Buzzetti M, Della Torre S, Del Pero C, Huerto CHE, Leonforte F. Microclimatic monitoring of the Duomo (Milan Cathedral): risks-based analysis for the conservation of its cultural heritage. Build Environ. 2019;148:240–57. es_ES
dc.description.references Lucero-Gómez P, Balliana E, Caterina Izzo F, Zendri E. A new methodology to characterize indoor variations of temperature and relative humidity in historical museum buildings for conservation purposes. Build Environ. 2020;185:107147. es_ES
dc.description.references Sciurpi F, Carletti C, Cellai G, Muratore V, Orsi A, Pierangioli L, Russo G, Schmidt ED. Environmental monitoring and building simulation application to Vasari Corridor: preliminary results. Energy Procedia. 2017;133:219–30. es_ES
dc.description.references Fabbri K, Pretelli M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014;76:15–31. es_ES
dc.description.references Schito E, Testi D, Grassi W. A proposal for new microclimate indexes for the evaluation of indoor air quality in museums. Buildings. 2016;6:41. es_ES
dc.description.references Corgnati SP, Filippi M. Assessment of thermo-hygrometric quality in museums: Method and in-field application to the “Duccio di Buoninsegna” exhibition at Santa Maria della Scala (Siena, Italy). J Cult Herit. 2010;11:345–9. es_ES
dc.description.references Camuffo D, Bernardi A, Sturaro G, Valentino A. The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. J Cult Herit. 2002;3:155–61. es_ES
dc.description.references Lucchi E. Environmental risk management for museums in historic buildings through an innovative approach: a case study of the Pinacoteca di Brera in Milan (Italy). Sustainability. 2020;12:5155. es_ES
dc.description.references Kramer RP, Maas MPE, Martens MHJ, van Schijndel AWM, Schellen HL. Energy conservation in museums using different setpoint strategies: a case study for a state-of-the-art museum using building simulations. Appl Energy. 2015;158:446–58. es_ES
dc.description.references Kramer R, Schellen L, Schellen H. Adaptive temperature limits for air-conditioned museums in temperate climates. Build Res Inf. 2017;46(6):686–97. es_ES
dc.description.references Kompatscher K, Kramer RP, Ankersmit B, Schellen HL. Intermittent conditioning of library archives: Microclimate analysis and energy impact. Build Environ. 2019;147:50–66. es_ES
dc.description.references Lucchi E. Multidisciplinary risk-based analysis for supporting the decision making process on conservation, energy efficiency, and human comfort in museum buildings. J Cult Herit. 2016;22:1079–89. es_ES
dc.description.references LASCAR temperature and humidity USB Data Logger - EL-USB-2-LCD. https://www.lascarelectronics.com/easylog-el-usb-2-lcd. Accessed 24 Jan 2023. es_ES
dc.description.references Díaz-Arellano I, Zarzo M, García-Diego F-J, Perles A. A methodology for the multi-point characterization of short-term temperature fluctuations in complex microclimates based on the European Standard EN 15757:2010: Application to the Archaeological Museum of L’Almoina (Valencia, Spain). Sensors. 2021;21(22):7754. es_ES
dc.description.references Frasca F, Siani AM, Casale GR, Pedone M, Bratasz Ł, Strojecki M, Mleczkowska A. Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and the application of the analogues method to predict microclimate indoor conditions. Environ Sci Pollut Res. 2017;24:13895–907. es_ES
dc.description.references Ramírez S, Zarzo M, Perles A, García-Diego F-J. A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings. Sensors. 2021;21(2):436. es_ES
dc.description.references Ramírez S, Zarzo M, García-Diego F-J. Multivariate time series analysis of temperatures in the Archaeological Museum of L’Almoina (Valencia, Spain). Sensors. 2021;21(13):4377. es_ES
dc.description.references Siani AM, Frasca F, Di Michele M, Bonacquisti V, Fazio E. Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums. Environ Sci Pollut Res. 2018;25:28787–97. es_ES
dc.description.references Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M. Methods for imputation of missing values in air quality data sets. Atmos Environ. 2004;38:2895–907. es_ES
dc.description.references García-Diego F-J, Verticchio E, Beltrán P, Siani A. Assessment of the minimum sampling frequency to avoid measurement redundancy in microclimate field surveys in museum buildings. Sensors. 2016;16:1291. es_ES
dc.description.references Califano A, Baiesi M, Bertolin C. Analysing the main standards for climate-induced mechanical risk in heritage wooden structures: the case of the Ringebu and Heddal Stave Churches (Norway). Atmosphere (Basel). 2022;13(5):791. es_ES
dc.description.references Leijonhufvud G, Broström T. Standardizing the indoor climate in historic buildings: opportunities, challenges and ways forward. J Archit Conserv. 2018;24(1):3–18. es_ES
dc.description.references Verticchio E, Frasca F, Cavalieri P, Teodonio L, Fugaro D, Siani AM. Conservation risks for paper collections induced by the microclimate in the repository of the Alessandrina Library in Rome (Italy). Herit Sci. 2022;10:1–15. es_ES
dc.description.references Camuffo D, Della VA, Becherini F. The European Standard EN 15757 concerning specifications for relative humidity: suggested improvements for its revision. Atmosphere. 2022;13(9):1344. es_ES
dc.description.references Peel MC, Finlayson BL, Mcmahon TA. Hydrology and earth system sciences updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633–44. es_ES
dc.description.references Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214. es_ES
dc.description.references Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, Bosco E, Mavrikas E, Pariente T. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/949/1/012026. es_ES
dc.description.references EN 16242:2012. Conservation of cultural heritage - Procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardization; 2012. es_ES
dc.description.references EN 15758:2010. Conservation of Cultural Property - Procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussels: European Committee for Standardization; 2010. es_ES
dc.description.references Rossi M, Gittins M, Mercuri G, Perles A, Peiró A. CollectionCare: D1.2 compilation and consolidation of historical environmental data in CSV format of selected works of art from partner museums. 2021. Zenodo. https://doi.org/10.5281/zenodo.4749658. es_ES
dc.description.references Folch-Fortuny A, Arteaga F, Ferrer A. PLS model building with missing data: new algorithms and a comparative study. J Chemom. 2017;31(7):e2897. es_ES
dc.description.references Merello P, Fernández-Navajas Á, Curiel-Esparza J, Zarzo M, García-Diego FJ. Characterisation of thermo-hygrometric conditions of an archaeological site affected by unlike boundary weather conditions. Build Environ. 2014;76:125–33. es_ES
dc.description.references Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11:8685–710. es_ES
dc.description.references Merello P, García-Diego FJ, Zarzo M. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy). Sci Total Environ. 2014;488–489:14–25. es_ES
dc.description.references Martens M. Climate risk assessment in museums: degradation risks determined from temperature and relative humidity data. Eindhoven: Technische Universiteit Eindhoven; 2012. https://doi.org/10.6100/IR729797. es_ES
dc.description.references AEMET OpenData. https://opendata.aemet.es/centrodedescargas/inicio. Accessed 25 Jan 2023. es_ES
dc.description.references Euskalmet | Agencia vasca de meteorología|Datos de estaciones. https://www.euskalmet.euskadi.eus/observacion/datos-de-estaciones/. Accessed 25 Jan 2023. es_ES
dc.description.references Stub Johnsen J. Conservation of cultural heritage—European standards on the environment. Climate for collections—standards and uncertainties postprints of the Munich Climate Conference 7 to 9 November 2012. 2013. pp. 35–44. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem