- -

Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series

Mostrar el registro completo del ítem

Díaz-Arellano, I.; Zarzo Castelló, M.; Aransay, C.; Gonzalez De Aspuru, S.; Laborda Macario, J.; Perles, A. (2023). Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series. Heritage Science. 11(1):1-20. https://doi.org/10.1186/s40494-023-00888-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201081

Ficheros en el ítem

Metadatos del ítem

Título: Reconstruction of historical hygrometric time series for the application of the European standard EN 15757:2010 and its comparison with current time series
Autor: Díaz-Arellano, Ignacio Zarzo Castelló, Manuel Aransay, Cristina Gonzalez de Aspuru, Sara Laborda Macario, Jaime Perles, Angel
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] The quality and quantity of thermo-hygrometric data are essential to carry out an appropriate assessment of the microclimate from a preventive conservation standpoint in those spaces where the artefacts to be preserved ...[+]
Palabras clave: Preventive conservation , Microclimate monitoring , Cultural heritage , Multivariate statistics
Derechos de uso: Reconocimiento (by)
Fuente:
Heritage Science. (eissn: 2050-7445 )
DOI: 10.1186/s40494-023-00888-6
Editorial:
BioMed Central
Versión del editor: https://doi.org/10.1186/s40494-023-00888-6
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/814624/EU
Agradecimientos:
his research was funded by the European Union's Horizon 2020 research and innovation program under Grant agreement No. 814624
Tipo: Artículo

References

Camuffo D. Microclimate for cultural heritage—conservation, restoration and maintenance of indoor and outdoor monuments. 2nd ed. Amsterdam: Elsevier; 2013.

Pavlogeorgatos G. Environmental parameters in museums. Build Environ. 2003;38:1457–62.

UNI 10829. Works of art of historical importance. Ambient conditions for the conservation. Measurement and Analysis. 1999. [+]
Camuffo D. Microclimate for cultural heritage—conservation, restoration and maintenance of indoor and outdoor monuments. 2nd ed. Amsterdam: Elsevier; 2013.

Pavlogeorgatos G. Environmental parameters in museums. Build Environ. 2003;38:1457–62.

UNI 10829. Works of art of historical importance. Ambient conditions for the conservation. Measurement and Analysis. 1999.

Culturali MPIBELA. Atto di Indirizzo Sui Criteri Tecnico-Scientifici e Sugli Standard di Funzionamento e Sviluppo dei Musei. Rome, Italy. 2001.

Staniforth S, Hayes B, Bullock L. Appropriate technologies for relative humidity control for museum collections housed in historic buildings. Stud Conserv. 1994;39:123–8.

Blades N, Rice K. Conservation heating and energy efficiency at the national trust: theory and practice. In: Developments in climate control of historic buildings. Linderhof Palace; 2011. pp. 13–19.

Broström T, Vyhlídal T, Simeunovic G, Larsen PK, Zítek P. Evaluation of different approaches of microclimate control in cultural heritage buildings. Climate for collections—standards and uncertainties postprints of the Munich Climate Conference 7 to 9 November 2012. 2013. pp. 105–15.

Neuhaus E. A critical look at HVAC-systems in the museum environment. Climate for collections—standards and uncertainties. Postprints of the Munich Climate Conference, 7 to 9 November 2012. 2012.

Taylor T. Preservation of cultural heritage: the design of low-energy archival storage. In: Bahei-El-Din Y, Hassan M, editors. Advanced technologies for sustainable systems: selected contributions from the international conference on Sustainable Vital Technologies in Engineering and Informatics, BUE ACE1 2016, 7–9 November 2016, Cairo, Egypt. Cham: Springer International Publishing; 2017. p. 11–8.

Bratasz Ł. Allowable microclimatic variations in museums and historic buildings: reviewing the guidelines. Climate for collections—standards and uncertainties. Postprints of the Munich Climate Conference, 7 to 9 November 2012. 2013;11–19.

Michalski S. The ideal climate, risk management, the ASHRAE Chapter, proofed fluctuations, and toward a full risk analysis model. In: Experts roundtable on sustainable climate management strategies. 2007. p. 1–19.

EN 15757:2010. Conservation of cultural property—specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardization; 2010.

ASHRAE American Society of Heating, Refrigeration and Air-Conditioning Engineers. Chapter 24: Museums, galleries, archives, and libraries. In: ASHRAE handbook—HVAC applications, 2019. 2007.

Silva HE, Coelho GBA, Henriques FMA. Climate monitoring in World Heritage List buildings with low-cost data loggers: the case of the Jerónimos Monastery in Lisbon (Portugal). J Build Eng. 2020;28:24–35.

García-Diego F-J, Zarzo M. Microclimate monitoring by multivariate statistical control: the renaissance frescoes of the Cathedral of Valencia (Spain). J Cult Herit. 2010;11:339–44.

Merello P, García-Diego F-J, Zarzo M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem Cent J. 2012;6:145.

Klein LJ, Bermudez SA, Schrott AG, Tsukada M, Dionisi-Vici P, Kargere L, Marianno F, Hamann HF, López V, Leona M. Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors. 2017;17:1998.

Aste N, Adhikari RS, Buzzetti M, Della Torre S, Del Pero C, Huerto CHE, Leonforte F. Microclimatic monitoring of the Duomo (Milan Cathedral): risks-based analysis for the conservation of its cultural heritage. Build Environ. 2019;148:240–57.

Lucero-Gómez P, Balliana E, Caterina Izzo F, Zendri E. A new methodology to characterize indoor variations of temperature and relative humidity in historical museum buildings for conservation purposes. Build Environ. 2020;185:107147.

Sciurpi F, Carletti C, Cellai G, Muratore V, Orsi A, Pierangioli L, Russo G, Schmidt ED. Environmental monitoring and building simulation application to Vasari Corridor: preliminary results. Energy Procedia. 2017;133:219–30.

Fabbri K, Pretelli M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014;76:15–31.

Schito E, Testi D, Grassi W. A proposal for new microclimate indexes for the evaluation of indoor air quality in museums. Buildings. 2016;6:41.

Corgnati SP, Filippi M. Assessment of thermo-hygrometric quality in museums: Method and in-field application to the “Duccio di Buoninsegna” exhibition at Santa Maria della Scala (Siena, Italy). J Cult Herit. 2010;11:345–9.

Camuffo D, Bernardi A, Sturaro G, Valentino A. The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. J Cult Herit. 2002;3:155–61.

Lucchi E. Environmental risk management for museums in historic buildings through an innovative approach: a case study of the Pinacoteca di Brera in Milan (Italy). Sustainability. 2020;12:5155.

Kramer RP, Maas MPE, Martens MHJ, van Schijndel AWM, Schellen HL. Energy conservation in museums using different setpoint strategies: a case study for a state-of-the-art museum using building simulations. Appl Energy. 2015;158:446–58.

Kramer R, Schellen L, Schellen H. Adaptive temperature limits for air-conditioned museums in temperate climates. Build Res Inf. 2017;46(6):686–97.

Kompatscher K, Kramer RP, Ankersmit B, Schellen HL. Intermittent conditioning of library archives: Microclimate analysis and energy impact. Build Environ. 2019;147:50–66.

Lucchi E. Multidisciplinary risk-based analysis for supporting the decision making process on conservation, energy efficiency, and human comfort in museum buildings. J Cult Herit. 2016;22:1079–89.

LASCAR temperature and humidity USB Data Logger - EL-USB-2-LCD. https://www.lascarelectronics.com/easylog-el-usb-2-lcd. Accessed 24 Jan 2023.

Díaz-Arellano I, Zarzo M, García-Diego F-J, Perles A. A methodology for the multi-point characterization of short-term temperature fluctuations in complex microclimates based on the European Standard EN 15757:2010: Application to the Archaeological Museum of L’Almoina (Valencia, Spain). Sensors. 2021;21(22):7754.

Frasca F, Siani AM, Casale GR, Pedone M, Bratasz Ł, Strojecki M, Mleczkowska A. Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and the application of the analogues method to predict microclimate indoor conditions. Environ Sci Pollut Res. 2017;24:13895–907.

Ramírez S, Zarzo M, Perles A, García-Diego F-J. A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings. Sensors. 2021;21(2):436.

Ramírez S, Zarzo M, García-Diego F-J. Multivariate time series analysis of temperatures in the Archaeological Museum of L’Almoina (Valencia, Spain). Sensors. 2021;21(13):4377.

Siani AM, Frasca F, Di Michele M, Bonacquisti V, Fazio E. Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums. Environ Sci Pollut Res. 2018;25:28787–97.

Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M. Methods for imputation of missing values in air quality data sets. Atmos Environ. 2004;38:2895–907.

García-Diego F-J, Verticchio E, Beltrán P, Siani A. Assessment of the minimum sampling frequency to avoid measurement redundancy in microclimate field surveys in museum buildings. Sensors. 2016;16:1291.

Califano A, Baiesi M, Bertolin C. Analysing the main standards for climate-induced mechanical risk in heritage wooden structures: the case of the Ringebu and Heddal Stave Churches (Norway). Atmosphere (Basel). 2022;13(5):791.

Leijonhufvud G, Broström T. Standardizing the indoor climate in historic buildings: opportunities, challenges and ways forward. J Archit Conserv. 2018;24(1):3–18.

Verticchio E, Frasca F, Cavalieri P, Teodonio L, Fugaro D, Siani AM. Conservation risks for paper collections induced by the microclimate in the repository of the Alessandrina Library in Rome (Italy). Herit Sci. 2022;10:1–15.

Camuffo D, Della VA, Becherini F. The European Standard EN 15757 concerning specifications for relative humidity: suggested improvements for its revision. Atmosphere. 2022;13(9):1344.

Peel MC, Finlayson BL, Mcmahon TA. Hydrology and earth system sciences updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633–44.

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214.

Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, Bosco E, Mavrikas E, Pariente T. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/949/1/012026.

EN 16242:2012. Conservation of cultural heritage - Procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardization; 2012.

EN 15758:2010. Conservation of Cultural Property - Procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussels: European Committee for Standardization; 2010.

Rossi M, Gittins M, Mercuri G, Perles A, Peiró A. CollectionCare: D1.2 compilation and consolidation of historical environmental data in CSV format of selected works of art from partner museums. 2021. Zenodo. https://doi.org/10.5281/zenodo.4749658.

Folch-Fortuny A, Arteaga F, Ferrer A. PLS model building with missing data: new algorithms and a comparative study. J Chemom. 2017;31(7):e2897.

Merello P, Fernández-Navajas Á, Curiel-Esparza J, Zarzo M, García-Diego FJ. Characterisation of thermo-hygrometric conditions of an archaeological site affected by unlike boundary weather conditions. Build Environ. 2014;76:125–33.

Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11:8685–710.

Merello P, García-Diego FJ, Zarzo M. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy). Sci Total Environ. 2014;488–489:14–25.

Martens M. Climate risk assessment in museums: degradation risks determined from temperature and relative humidity data. Eindhoven: Technische Universiteit Eindhoven; 2012. https://doi.org/10.6100/IR729797.

AEMET OpenData. https://opendata.aemet.es/centrodedescargas/inicio. Accessed 25 Jan 2023.

Euskalmet | Agencia vasca de meteorología|Datos de estaciones. https://www.euskalmet.euskadi.eus/observacion/datos-de-estaciones/. Accessed 25 Jan 2023.

Stub Johnsen J. Conservation of cultural heritage—European standards on the environment. Climate for collections—standards and uncertainties postprints of the Munich Climate Conference 7 to 9 November 2012. 2013. pp. 35–44.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem