- -

Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs

Mostrar el registro completo del ítem

Belloumi, D.; Calvet, S.; Roca, MI.; Ferrer, P.; Jiménez Belenguer, AI.; Cambra López, M.; García-Rebollar, P.... (2023). Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs. Scientific Reports. 13(1):1-19. https://doi.org/10.1038/s41598-023-44741-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201122

Ficheros en el ítem

Metadatos del ítem

Título: Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs
Autor: Belloumi, Dhekra Calvet, S. Roca, Marta Isabel Ferrer, Pablo Jiménez Belenguer, Ana Isabel Cambra López, María García-Rebollar, Paloma Climent, Eric Martinez-Blanch, Juan Tortajada, Marta Chenoll, Empar Bermejo, Almudena Cerisuelo, Alba
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The study aimed to assess the impact of dehydrated citrus pulp (DCP) on growth performance, fecal characteristics, fecal bacterial composition (based on 16S rRNA analysis), and fecal and serum metabolomic profiles in ...[+]
Palabras clave: Dehydrated citrus pulp , Microbiota , Metabolome , Crossbred pigs
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-023-44741-z
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-023-44741-z
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-56653-C3-2-R/ES/EFECTO DE LA INCLUSION DE SUBPRODUCTOS EN LAS EMISIONES DE GASES DE LOS PURINES. EVALUACION GLOBAL DE LOS IMPACTOS AMBIENTALES/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2020%2F023/
info:eu-repo/grantAgreement/MICINN//RTI-2018-095246-B-C22/
Agradecimientos:
This project was funded by the Spanish Ministry of Science and Innovation (AGL2014-56653 and RTI-2018-095246-B-C22). Dhekra Belloumi is a recipient of the Santiago Grisolia PhD scholarship (GRISOLIAP/2020/023).
Tipo: Artículo

References

Food and Agriculture Organization of the United Nations. Citrus Fruit-Fresh and Processed Statistical Bulletin 2020. https://www.fao.org/3/cb6492en/cb6492en.pdf (2021).

Mamma, D. & Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste. Biomass. Valor. 5(4), 529–549 (2014).

Alnaimy, A., Gad, A. E., Mustafa, M. M., Atta, M. A. A. & Basuony, H. A. M. Using of citrus by-products in farm animals feeding. Open. Access. J. Sci. 1(3), 58–67 (2017). [+]
Food and Agriculture Organization of the United Nations. Citrus Fruit-Fresh and Processed Statistical Bulletin 2020. https://www.fao.org/3/cb6492en/cb6492en.pdf (2021).

Mamma, D. & Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste. Biomass. Valor. 5(4), 529–549 (2014).

Alnaimy, A., Gad, A. E., Mustafa, M. M., Atta, M. A. A. & Basuony, H. A. M. Using of citrus by-products in farm animals feeding. Open. Access. J. Sci. 1(3), 58–67 (2017).

Ferrer, P. Valorisation of Mediterranean Agro-Industrial by Products in Pig Production as Feed and Anaerobic Co-digestion of Slurry (University Politècnica de València, 2021).

Moset, V. et al. Ensiled citrus Pulp as a by-product feedstuff for finishing pigs: Nutritional value and effects on intestinal microflora and carcass quality. Span. J. Agric. Res. 13(3), e0607 (2015).

Ferrer, P. et al. The impact of replacing barley by dehydrated orange pulp in finishing pig diets on performance, carcass quality, and gaseous emissions from slurry. Animal 16(11), 100659 (2022).

Ferrer, P. et al. Effects of orange pulp conservation methods (dehydrated or ensiled sun-dried) on the nutritional value for finishing pigs and implications on potential gaseous emissions from slurry. Animals 11(2), 387 (2021).

Nieto, G. et al. Valorization of citrus co-products: Recovery of bioactive compounds and application in meat and meat products. Plants 10(6), 1069 (2021).

Singh, B., Singh, J. P., Kaus, A. & Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food. Res. Int. 132, 109114 (2020).

Fratianni, F. et al. Polyphenols, antioxidant, antibacterial, and biofilm inhibitory activities of peel and pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in Southern Italy. Molecules 24(24), 4577 (2019).

Sost, M. M. et al. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients 13(11), 3915 (2021).

Chen, T. et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 7(1), 2594 (2017).

Sun, Y., Su, Y. & Zhu, W. Microbiome-metabolome response in the cecum and colon of pig to a high resistant starch diet. Front. Microbiol. 7, 779 (2016).

Le Sciellour, M., Labussière, E., Zemb, O. & Renaudeau, D. Effect of dietary fiber content on nutrition digestibility and fecal microbiota composition in growing-finishing pigs. PLoS ONE 13(10), e0206159 (2018).

Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165(6), 1332–1345 (2016).

Foti, P., Ballistreri, G., Timpanaro, N., Rapisarda, P. & Romeo, F. V. Prebiotic effects of citrus pectic oligosaccharides. Nat. Prod. Res. 36(12), 3173–3176 (2022).

Tiam, L. et al. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol. Nutr. Food. Res. 61(1), 1600186 (2017).

Uerlings, J. et al. Impact of citrus pulp or inulin on intestinal microbiota and metabolites, barrier, and immune function of weaned piglets. Front. Nutr. 8, 650211 (2021).

Zhou, L. et al. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front. Endocrinol. 11, 628 (2020).

Jiménez-Girón, A. et al. Faecal metabolomic fingerprint after moderate consumption of red wine by healthy subjects. J. Proteome. Res. 14(2), 897–905 (2015).

Agueusop, I., Musholt, P. B., Klaus, B., Hightower, K. & Kannt, A. Short-term variability of the human serum metabolome depending on nutritional and metabolic health status. Sci. Rep. 10, 16310 (2020).

Almeida, V. V. et al. Interactive effect of dietary protein and dried citrus pulp levels on growth performance, small intestinal morphology, and hindgut fermentation of weanling pigs. J. Anim. Sci. 95(1), 257–269 (2017).

Rangel-Huerta, O. D. et al. A serum metabolomics-driven approach predicts orange juice consumption and its impact on oxidative stress and inflammation in subjects from the BIONAOS study. Mol. Nutr. Food. Res. 61(2), 1600120 (2017).

O’Sullivan, T. C., Lynch, P. B., Morrissey, P. A. & O’Grady, J. F. Evaluation of citrus pulp in diets for sows and growing pigs. Ir. J. Agric. Food. Res. 42(2), 243–253 (2003).

Strong, C. M., Brendemuhl, J. H., Johnson, D. D. & Carr, C. C. The effect of elevated dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. Prof. Anim. Sci. 31(3), 191–200 (2015).

Yang, Y., Sun, C., Li, F., Shan, A. & Shi, B. Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electron. J. Biotechnol. 53, 33–43 (2021).

Tian, M. et al. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 6(4), 397–403 (2020).

Chwen, L. T., Foo, H. L., Thanh, N. T. & Chloe, D. W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australes. J. Anim. Sci. 26(5), 700–704 (2013).

Williams, B., Verstegen, M. W. A. & Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14(2), 207–228 (2001).

Ndou, S. P., Kiarie, E. & Nyachoti, C. M. Flaxseed meal and oat hulls supplementation: impact on predicted production and absorption of volatile fatty acids and energy from hindgut fermentation in growing pigs. J. Anim. Sci. 97(1), 302–314 (2019).

Sutera, A. M. et al. Effect of a co-feed liquid whey-integrated diet on crossbred pigs’ fecal microbiota. Animals 13(11), 1750 (2023).

Tardiolo, G. et al. Characterization of the nero siciliano pig fecal microbiota after a liquid whey-supplemented diet. Animals 13(4), 642 (2023).

Holman, D. B., Brunelle, B. W., Trachsel, J. & Allen, H. K. Meta-analysis to define a core microbiota in the swine gut. mSystems. 2(3), e00004-17 (2017).

Pajarillo, E. A. B. et al. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 52(8), 646–651 (2014).

Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464), 541–546 (2013).

Verschuren, L. M. G. et al. Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex. J. Anim. Sci. 96(4), 1405–1418 (2018).

Jha, R. & Berrocoso, J. D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9(9), 1441–1452 (2015).

Dušková, D. & Marounek, M. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol. 33(2), 159–163 (2001).

Onarman Umu, Ö. C. et al. Gut microbiota profiling in Norwegian weaner pigs reveals potentially beneficial effects of a high-fiber rapeseed diet. PLoS ONE 13(12), e0209439 (2018).

Deng, F. et al. The diversity, composition, and metabolic pathways of Archaea in pigs. Animals 11(7), 2139 (2021).

Peng, Y. et al. Archaea: An under-estimated kingdom in livestock animals. Front. Vet. Sci. 9, 973508 (2022).

Ren, D., Li, L., Schwabacher, A. W., Young, J. W. & Beitz, D. C. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61(1), 33–40 (1996).

Sáiz-Vazquez, O., Puente-Martínez, A., Ubillos-Landa, S., Pacheco-Bonrostro, J. & Santabárbara, J. Cholesterol and Alzheimer’s disease risk: A meta-meta-analysis. Brain. Sci. 10(6), 386 (2020).

Gerritsen, J. et al. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ. 5, e3698 (2017).

Gerritsen, J. et al. A comparative and functional genomics analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. BioRxiv 5, 845511 (2019).

Pieper, R. et al. Health relevance of intestinal protein fermentation in young pigs. Anim. Health. Res. Rev. 17(2), 137–147 (2016).

Li, H. H., Li, Y. P., Zhu, Q., Qiao, J. Y. & Wang, W. J. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88. J. Appl. Microbiol. 125(4), 964–975 (2018).

Cisse, S. et al. Standardized natural citrus extract dietary supplementation influences sows’ microbiota, welfare, and preweaning piglets’ performances in commercial rearing conditions. Transl. Anim. Sci. 4(2), 1278–1289 (2020).

Wang, X. et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 7, 109 (2019).

Windey, K., De Peter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food. Res. 56(1), 184–196 (2012).

Gilbert, M. S., Ijssennagger, N., Kies, A. K. & van Mil, S. W. C. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am. J. Physiol. Gastrointest. Liver. Physiol. 315(2), 159–170 (2018).

Zhang, H. et al. Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms 8(11), 1735 (2020).

Hughes, R., Kurth, M. J., McGilligan, V., McGlynn, H. & Rowland, I. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr. Cancer. 60(2), 259–266 (2008).

Blaut, M. & Clavel, T. Metabolic diversity of the intestinal microbiota: Implications for health and disease. J. Nutr. 137(3), 751S-S755 (2007).

Diether, N. E. & Willing, B. P. Microbial fermentation of dietary protein: An important factor in diet-microbe-host interaction. Microorganisms 7(1), 19 (2019).

Lillehoj, H. et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 49(1), 76 (2018).

Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49(12), 2083–2090 (2017).

Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 25, 166–187 (2008).

Shmuel, Y. Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients (Chapman & Hall/CRC, 2004).

Huang, A. et al. Metabolic profile of skimmianine in rats determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Molecules 22(4), 489 (2017).

Detsi, A., Kontogiorgis, C. & Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015–2016). Expert. Opin. Ther. Pat. 27(11), 1201–1226 (2017).

Wang, Y. et al. Two new sesquiterpenes and six norsesquiterpenes from the solid culture of the edible mushroom Flammulina velutipes. Tetrahedron. 68(14), 3012–3018 (2012).

Mgbeahuruike, E. E., Stålnake, M., Vuorela, H. & Holm, Y. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials. Antibiotics 8(2), 55 (2019).

AOAC International. Official Methods of Analysis of AOAC International 21st edn. (Association of Official Analytical Chemists, 2019).

Less, R. Food Analysis: Analytical and Quality Control Methods for the Manufacturer and Buyer 145–146 (Leonard Hill Books, 1975).

Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74(10), 3583–3597 (1991).

Licitra, G., Hernández, T. M. & Van Soest, P. J. Standardisation of procedures for nitrogen fractionation of ruminant feed. Anim. Feed. Sci. Technol. 57(4), 347–358 (1996).

Cano, A. & Bermejo, A. Rootstock and cultivar influence on bioactive compounds in citrus peels. J. Sci. Food. Agric. 91(9), 1702–1711 (2011).

Morales, J., Navarro, P., Besada, C., Salvador, A. & Bermejo, A. Physico-chemical, sensorial and nutritional quality during the harvest season of “Tango” mandarins grafted onto Carrizo Citrange and Forner-Alcaide no. 5. Food. Chem. 339, 127781 (2020).

Jouany, J. P. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci. Aliments. 2(2), 131–144 (1982).

Yuan, S., Cohen, D. B., Ravel, J., Abdo, Z. & Forney, L. J. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7(3), e33865 (2012).

Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic. Acids. Res. 41(1), e1 (2013).

Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate illumina paired-end read merger. Bioinformatics 30(5), 614–620 (2014).

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10 (2011).

Callahan, B. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581–583 (2016).

Roca, M., Alcoriza, M. I., Garcia-Cañaveras, J. C. & Lahoz, A. Reviewing the metabolome coverage provided by LC-MC: Focus on sample preparation and chromatography: A tutorial. Anal. Chim. Acta. 1147, 38–55 (2021).

Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78(3), 779–87 (2006).

Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass data sets. Anal. Chem. 84(1), 283–289 (2012).

Gil-de-la-Fuente, A. et al. CEU mediator 3.0: A metabolite annotation tool. J. Proteome. Res. 18(2), 797–802 (2019).

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic. Acids. Res. 28(1), 27–30 (2000).

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic. Acids. Res. 44(D1), 457–462 (2016).

Goldansaz, S. A. et al. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 12(5), e0177675 (2017).

Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009).

Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 112(41), 12580–12585 (2015).

Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 48(4), 2097–2098 (2014).

Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014).

Oksanen, J. et al. Vegan: Community ecology package. R Package Version 2.5–7 (2020).

Lê, S., Josse, J. & Husson, F. FactoMine R: An R package for multivariate analysis. J. Stat. Softw. 25(1), 1–18 (2008).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem