- -

Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belloumi, Dhekra es_ES
dc.contributor.author Calvet, S. es_ES
dc.contributor.author Roca, Marta Isabel es_ES
dc.contributor.author Ferrer, Pablo es_ES
dc.contributor.author Jiménez Belenguer, Ana Isabel es_ES
dc.contributor.author Cambra López, María es_ES
dc.contributor.author García-Rebollar, Paloma es_ES
dc.contributor.author Climent, Eric es_ES
dc.contributor.author Martinez-Blanch, Juan es_ES
dc.contributor.author Tortajada, Marta es_ES
dc.contributor.author Chenoll, Empar es_ES
dc.contributor.author Bermejo, Almudena es_ES
dc.contributor.author Cerisuelo, Alba es_ES
dc.date.accessioned 2023-12-26T19:02:37Z
dc.date.available 2023-12-26T19:02:37Z
dc.date.issued 2023-10-16 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201122
dc.description.abstract [EN] The study aimed to assess the impact of dehydrated citrus pulp (DCP) on growth performance, fecal characteristics, fecal bacterial composition (based on 16S rRNA analysis), and fecal and serum metabolomic profiles in crossbred pigs. 80 finishing pigs Duroc x (Landrace x Large White) were fed either a control diet (C) or a diet with 240 g/kg DCP (T) for six weeks. Including DCP in diets tended to decrease feed intake, increased (p < 0.05) the concentrations of acetic and heptanoic acids and decreased (p < 0.05) fecal butyric and branched-chain fatty acid concentrations in feces. Animals fed DCP exhibited a lower abundance of the genera Clostridium and Romboutsia, while Lachnospira significantly increased. Orthogonal partial least squares discriminant analysis plotted a clear separation of fecal and serum metabolites between groups. The main discriminant fecal metabolites were associated with bacterial protein fermentation and were downregulated in T-fed pigs. In serum, DCP supplementation upregulated metabolites related to protein and fatty acids metabolism. In conclusion, the addition of DCP as an environmentally friendly source of nutrients in pig diets, resulted in modifications of fecal bacterial composition, fermentation patterns, and overall pig metabolism, suggesting improvements in protein metabolism and gut health. es_ES
dc.description.sponsorship This project was funded by the Spanish Ministry of Science and Innovation (AGL2014-56653 and RTI-2018-095246-B-C22). Dhekra Belloumi is a recipient of the Santiago Grisolia PhD scholarship (GRISOLIAP/2020/023). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dehydrated citrus pulp es_ES
dc.subject Microbiota es_ES
dc.subject Metabolome es_ES
dc.subject Crossbred pigs es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-023-44741-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-56653-C3-2-R/ES/EFECTO DE LA INCLUSION DE SUBPRODUCTOS EN LAS EMISIONES DE GASES DE LOS PURINES. EVALUACION GLOBAL DE LOS IMPACTOS AMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2020%2F023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTI-2018-095246-B-C22/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Belloumi, D.; Calvet, S.; Roca, MI.; Ferrer, P.; Jiménez Belenguer, AI.; Cambra López, M.; García-Rebollar, P.... (2023). Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs. Scientific Reports. 13(1):1-19. https://doi.org/10.1038/s41598-023-44741-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-023-44741-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 37845279 es_ES
dc.identifier.pmcid PMC10579234 es_ES
dc.relation.pasarela S\501533 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Food and Agriculture Organization of the United Nations. Citrus Fruit-Fresh and Processed Statistical Bulletin 2020. https://www.fao.org/3/cb6492en/cb6492en.pdf (2021). es_ES
dc.description.references Mamma, D. & Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste. Biomass. Valor. 5(4), 529–549 (2014). es_ES
dc.description.references Alnaimy, A., Gad, A. E., Mustafa, M. M., Atta, M. A. A. & Basuony, H. A. M. Using of citrus by-products in farm animals feeding. Open. Access. J. Sci. 1(3), 58–67 (2017). es_ES
dc.description.references Ferrer, P. Valorisation of Mediterranean Agro-Industrial by Products in Pig Production as Feed and Anaerobic Co-digestion of Slurry (University Politècnica de València, 2021). es_ES
dc.description.references Moset, V. et al. Ensiled citrus Pulp as a by-product feedstuff for finishing pigs: Nutritional value and effects on intestinal microflora and carcass quality. Span. J. Agric. Res. 13(3), e0607 (2015). es_ES
dc.description.references Ferrer, P. et al. The impact of replacing barley by dehydrated orange pulp in finishing pig diets on performance, carcass quality, and gaseous emissions from slurry. Animal 16(11), 100659 (2022). es_ES
dc.description.references Ferrer, P. et al. Effects of orange pulp conservation methods (dehydrated or ensiled sun-dried) on the nutritional value for finishing pigs and implications on potential gaseous emissions from slurry. Animals 11(2), 387 (2021). es_ES
dc.description.references Nieto, G. et al. Valorization of citrus co-products: Recovery of bioactive compounds and application in meat and meat products. Plants 10(6), 1069 (2021). es_ES
dc.description.references Singh, B., Singh, J. P., Kaus, A. & Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food. Res. Int. 132, 109114 (2020). es_ES
dc.description.references Fratianni, F. et al. Polyphenols, antioxidant, antibacterial, and biofilm inhibitory activities of peel and pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in Southern Italy. Molecules 24(24), 4577 (2019). es_ES
dc.description.references Sost, M. M. et al. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients 13(11), 3915 (2021). es_ES
dc.description.references Chen, T. et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 7(1), 2594 (2017). es_ES
dc.description.references Sun, Y., Su, Y. & Zhu, W. Microbiome-metabolome response in the cecum and colon of pig to a high resistant starch diet. Front. Microbiol. 7, 779 (2016). es_ES
dc.description.references Le Sciellour, M., Labussière, E., Zemb, O. & Renaudeau, D. Effect of dietary fiber content on nutrition digestibility and fecal microbiota composition in growing-finishing pigs. PLoS ONE 13(10), e0206159 (2018). es_ES
dc.description.references Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165(6), 1332–1345 (2016). es_ES
dc.description.references Foti, P., Ballistreri, G., Timpanaro, N., Rapisarda, P. & Romeo, F. V. Prebiotic effects of citrus pectic oligosaccharides. Nat. Prod. Res. 36(12), 3173–3176 (2022). es_ES
dc.description.references Tiam, L. et al. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol. Nutr. Food. Res. 61(1), 1600186 (2017). es_ES
dc.description.references Uerlings, J. et al. Impact of citrus pulp or inulin on intestinal microbiota and metabolites, barrier, and immune function of weaned piglets. Front. Nutr. 8, 650211 (2021). es_ES
dc.description.references Zhou, L. et al. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front. Endocrinol. 11, 628 (2020). es_ES
dc.description.references Jiménez-Girón, A. et al. Faecal metabolomic fingerprint after moderate consumption of red wine by healthy subjects. J. Proteome. Res. 14(2), 897–905 (2015). es_ES
dc.description.references Agueusop, I., Musholt, P. B., Klaus, B., Hightower, K. & Kannt, A. Short-term variability of the human serum metabolome depending on nutritional and metabolic health status. Sci. Rep. 10, 16310 (2020). es_ES
dc.description.references Almeida, V. V. et al. Interactive effect of dietary protein and dried citrus pulp levels on growth performance, small intestinal morphology, and hindgut fermentation of weanling pigs. J. Anim. Sci. 95(1), 257–269 (2017). es_ES
dc.description.references Rangel-Huerta, O. D. et al. A serum metabolomics-driven approach predicts orange juice consumption and its impact on oxidative stress and inflammation in subjects from the BIONAOS study. Mol. Nutr. Food. Res. 61(2), 1600120 (2017). es_ES
dc.description.references O’Sullivan, T. C., Lynch, P. B., Morrissey, P. A. & O’Grady, J. F. Evaluation of citrus pulp in diets for sows and growing pigs. Ir. J. Agric. Food. Res. 42(2), 243–253 (2003). es_ES
dc.description.references Strong, C. M., Brendemuhl, J. H., Johnson, D. D. & Carr, C. C. The effect of elevated dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. Prof. Anim. Sci. 31(3), 191–200 (2015). es_ES
dc.description.references Yang, Y., Sun, C., Li, F., Shan, A. & Shi, B. Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electron. J. Biotechnol. 53, 33–43 (2021). es_ES
dc.description.references Tian, M. et al. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 6(4), 397–403 (2020). es_ES
dc.description.references Chwen, L. T., Foo, H. L., Thanh, N. T. & Chloe, D. W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australes. J. Anim. Sci. 26(5), 700–704 (2013). es_ES
dc.description.references Williams, B., Verstegen, M. W. A. & Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14(2), 207–228 (2001). es_ES
dc.description.references Ndou, S. P., Kiarie, E. & Nyachoti, C. M. Flaxseed meal and oat hulls supplementation: impact on predicted production and absorption of volatile fatty acids and energy from hindgut fermentation in growing pigs. J. Anim. Sci. 97(1), 302–314 (2019). es_ES
dc.description.references Sutera, A. M. et al. Effect of a co-feed liquid whey-integrated diet on crossbred pigs’ fecal microbiota. Animals 13(11), 1750 (2023). es_ES
dc.description.references Tardiolo, G. et al. Characterization of the nero siciliano pig fecal microbiota after a liquid whey-supplemented diet. Animals 13(4), 642 (2023). es_ES
dc.description.references Holman, D. B., Brunelle, B. W., Trachsel, J. & Allen, H. K. Meta-analysis to define a core microbiota in the swine gut. mSystems. 2(3), e00004-17 (2017). es_ES
dc.description.references Pajarillo, E. A. B. et al. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 52(8), 646–651 (2014). es_ES
dc.description.references Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464), 541–546 (2013). es_ES
dc.description.references Verschuren, L. M. G. et al. Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex. J. Anim. Sci. 96(4), 1405–1418 (2018). es_ES
dc.description.references Jha, R. & Berrocoso, J. D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9(9), 1441–1452 (2015). es_ES
dc.description.references Dušková, D. & Marounek, M. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol. 33(2), 159–163 (2001). es_ES
dc.description.references Onarman Umu, Ö. C. et al. Gut microbiota profiling in Norwegian weaner pigs reveals potentially beneficial effects of a high-fiber rapeseed diet. PLoS ONE 13(12), e0209439 (2018). es_ES
dc.description.references Deng, F. et al. The diversity, composition, and metabolic pathways of Archaea in pigs. Animals 11(7), 2139 (2021). es_ES
dc.description.references Peng, Y. et al. Archaea: An under-estimated kingdom in livestock animals. Front. Vet. Sci. 9, 973508 (2022). es_ES
dc.description.references Ren, D., Li, L., Schwabacher, A. W., Young, J. W. & Beitz, D. C. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61(1), 33–40 (1996). es_ES
dc.description.references Sáiz-Vazquez, O., Puente-Martínez, A., Ubillos-Landa, S., Pacheco-Bonrostro, J. & Santabárbara, J. Cholesterol and Alzheimer’s disease risk: A meta-meta-analysis. Brain. Sci. 10(6), 386 (2020). es_ES
dc.description.references Gerritsen, J. et al. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ. 5, e3698 (2017). es_ES
dc.description.references Gerritsen, J. et al. A comparative and functional genomics analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. BioRxiv 5, 845511 (2019). es_ES
dc.description.references Pieper, R. et al. Health relevance of intestinal protein fermentation in young pigs. Anim. Health. Res. Rev. 17(2), 137–147 (2016). es_ES
dc.description.references Li, H. H., Li, Y. P., Zhu, Q., Qiao, J. Y. & Wang, W. J. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88. J. Appl. Microbiol. 125(4), 964–975 (2018). es_ES
dc.description.references Cisse, S. et al. Standardized natural citrus extract dietary supplementation influences sows’ microbiota, welfare, and preweaning piglets’ performances in commercial rearing conditions. Transl. Anim. Sci. 4(2), 1278–1289 (2020). es_ES
dc.description.references Wang, X. et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 7, 109 (2019). es_ES
dc.description.references Windey, K., De Peter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food. Res. 56(1), 184–196 (2012). es_ES
dc.description.references Gilbert, M. S., Ijssennagger, N., Kies, A. K. & van Mil, S. W. C. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am. J. Physiol. Gastrointest. Liver. Physiol. 315(2), 159–170 (2018). es_ES
dc.description.references Zhang, H. et al. Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms 8(11), 1735 (2020). es_ES
dc.description.references Hughes, R., Kurth, M. J., McGilligan, V., McGlynn, H. & Rowland, I. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr. Cancer. 60(2), 259–266 (2008). es_ES
dc.description.references Blaut, M. & Clavel, T. Metabolic diversity of the intestinal microbiota: Implications for health and disease. J. Nutr. 137(3), 751S-S755 (2007). es_ES
dc.description.references Diether, N. E. & Willing, B. P. Microbial fermentation of dietary protein: An important factor in diet-microbe-host interaction. Microorganisms 7(1), 19 (2019). es_ES
dc.description.references Lillehoj, H. et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 49(1), 76 (2018). es_ES
dc.description.references Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49(12), 2083–2090 (2017). es_ES
dc.description.references Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 25, 166–187 (2008). es_ES
dc.description.references Shmuel, Y. Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients (Chapman & Hall/CRC, 2004). es_ES
dc.description.references Huang, A. et al. Metabolic profile of skimmianine in rats determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Molecules 22(4), 489 (2017). es_ES
dc.description.references Detsi, A., Kontogiorgis, C. & Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015–2016). Expert. Opin. Ther. Pat. 27(11), 1201–1226 (2017). es_ES
dc.description.references Wang, Y. et al. Two new sesquiterpenes and six norsesquiterpenes from the solid culture of the edible mushroom Flammulina velutipes. Tetrahedron. 68(14), 3012–3018 (2012). es_ES
dc.description.references Mgbeahuruike, E. E., Stålnake, M., Vuorela, H. & Holm, Y. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials. Antibiotics 8(2), 55 (2019). es_ES
dc.description.references AOAC International. Official Methods of Analysis of AOAC International 21st edn. (Association of Official Analytical Chemists, 2019). es_ES
dc.description.references Less, R. Food Analysis: Analytical and Quality Control Methods for the Manufacturer and Buyer 145–146 (Leonard Hill Books, 1975). es_ES
dc.description.references Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74(10), 3583–3597 (1991). es_ES
dc.description.references Licitra, G., Hernández, T. M. & Van Soest, P. J. Standardisation of procedures for nitrogen fractionation of ruminant feed. Anim. Feed. Sci. Technol. 57(4), 347–358 (1996). es_ES
dc.description.references Cano, A. & Bermejo, A. Rootstock and cultivar influence on bioactive compounds in citrus peels. J. Sci. Food. Agric. 91(9), 1702–1711 (2011). es_ES
dc.description.references Morales, J., Navarro, P., Besada, C., Salvador, A. & Bermejo, A. Physico-chemical, sensorial and nutritional quality during the harvest season of “Tango” mandarins grafted onto Carrizo Citrange and Forner-Alcaide no. 5. Food. Chem. 339, 127781 (2020). es_ES
dc.description.references Jouany, J. P. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci. Aliments. 2(2), 131–144 (1982). es_ES
dc.description.references Yuan, S., Cohen, D. B., Ravel, J., Abdo, Z. & Forney, L. J. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7(3), e33865 (2012). es_ES
dc.description.references Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic. Acids. Res. 41(1), e1 (2013). es_ES
dc.description.references Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate illumina paired-end read merger. Bioinformatics 30(5), 614–620 (2014). es_ES
dc.description.references Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10 (2011). es_ES
dc.description.references Callahan, B. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581–583 (2016). es_ES
dc.description.references Roca, M., Alcoriza, M. I., Garcia-Cañaveras, J. C. & Lahoz, A. Reviewing the metabolome coverage provided by LC-MC: Focus on sample preparation and chromatography: A tutorial. Anal. Chim. Acta. 1147, 38–55 (2021). es_ES
dc.description.references Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78(3), 779–87 (2006). es_ES
dc.description.references Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass data sets. Anal. Chem. 84(1), 283–289 (2012). es_ES
dc.description.references Gil-de-la-Fuente, A. et al. CEU mediator 3.0: A metabolite annotation tool. J. Proteome. Res. 18(2), 797–802 (2019). es_ES
dc.description.references Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic. Acids. Res. 28(1), 27–30 (2000). es_ES
dc.description.references Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic. Acids. Res. 44(D1), 457–462 (2016). es_ES
dc.description.references Goldansaz, S. A. et al. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 12(5), e0177675 (2017). es_ES
dc.description.references Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009). es_ES
dc.description.references Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 112(41), 12580–12585 (2015). es_ES
dc.description.references Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 48(4), 2097–2098 (2014). es_ES
dc.description.references Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014). es_ES
dc.description.references Oksanen, J. et al. Vegan: Community ecology package. R Package Version 2.5–7 (2020). es_ES
dc.description.references Lê, S., Josse, J. & Husson, F. FactoMine R: An R package for multivariate analysis. J. Stat. Softw. 25(1), 1–18 (2008). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem