- -

Power control of a grid-connected PV system during asymmetrical voltage faults

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Power control of a grid-connected PV system during asymmetrical voltage faults

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hunter, Gustavo es_ES
dc.contributor.author Riedemann, Javier es_ES
dc.contributor.author Andrade, Iván es_ES
dc.contributor.author Blasco-Gimenez, Ramon es_ES
dc.contributor.author Peña, Rubén es_ES
dc.date.accessioned 2023-12-27T19:01:23Z
dc.date.available 2023-12-27T19:01:23Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0948-7921 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201170
dc.description.abstract [EN] Under voltage faults, grid-tied photovoltaic inverters should remain connected to the grid according to fault ride-through requirements. Moreover, it is a desirable characteristic to keep the power injected to grid constant during the fault. This paper explores a control strategy to regulate the active and reactive powers delivered by a single-stage photovoltaic generation system to the grid during asymmetrical voltage faults. The reference for the active power is obtained from a maximum power point tracking algorithm, whereas the reference for the reactive power can be set freely if the zero-sequence voltage is null; otherwise, it will depend on the magnitude of the zero-sequence voltage and the active power reference. The power control loop generates the reference currents to be imposed by the grid-tied power inverter. These currents are regulated by a predictive controller. The proposed approach is simpler than other methods proposed in the literature. The performance of the control strategy presented is verified with an experimental laboratory setup where voltage sags and swells are considered. es_ES
dc.description.sponsorship This work was funded by Conicyt Chile Under Project FONDECYT 11180092. The financial support given by CONICYT/FONDAP/15110019 is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Electrical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solar power generation es_ES
dc.subject Current control es_ES
dc.subject Power generation es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Power control of a grid-connected PV system during asymmetrical voltage faults es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00202-019-00769-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180092/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDAP//CONICYT%2FFONDAP%2F15110019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Hunter, G.; Riedemann, J.; Andrade, I.; Blasco-Gimenez, R.; Peña, R. (2019). Power control of a grid-connected PV system during asymmetrical voltage faults. Electrical Engineering. 101(1):239-250. https://doi.org/10.1007/s00202-019-00769-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00202-019-00769-x es_ES
dc.description.upvformatpinicio 239 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\394141 es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.contributor.funder Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias, Chile es_ES
dc.description.references Greentech Media Research “By 2023, the world will have 1 trillion Watts of installed solar PV capacity”. https://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaci es_ES
dc.description.references Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98 es_ES
dc.description.references Hong Chih-Ming, Ting-Chia Ou, Kai-Hung Lu (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50:270–279 es_ES
dc.description.references Ou TC, Hong CM (2014) Dynamic operation and control of microgrid hybrid power systems. Energy 66:314–323 es_ES
dc.description.references Prakash SL, Arutchelvi M, Sharon SS (2015) Simulation and performance analysis of MPPT for single stage PV grid connected system. In: 2015 IEEE 9th international conference on Intelligent systems and control (ISCO), Coimbatore, pp 1–6 es_ES
dc.description.references Moghadasi A, Sargolzaei A, Moghaddami M, Sarwat AI, Yen K (2017) Active and reactive power control method for three-phase PV module-integrated converter based on a single-stage inverter. In: 2017 IEEE applied power electronics conference and exposition (APEC), Tampa, FL, pp 1357–1362 es_ES
dc.description.references L Hi, Xu Y, Adhikari S, Rizy DT, Li F, Irminger P (2012) Real and reactive power control of a three-phase single-stage PV system and PV voltage stability. 2012 IEEE power and energy society general meeting, San Diego, CA, pp 1–8 es_ES
dc.description.references Shao R, Wei R, Chang L (2014) A multi-stage MPPT algorithm for PV systems based on golden section search method. 2014 IEEE applied power electronics conference and exposition—APEC 2014, Fort Worth, TX, pp 676–683 es_ES
dc.description.references Zapata JW, Kouro S, Aguirre M, Meynard T (2015) Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. Industrial Electronics Society, IECON 2015 - 41st annual conference of the IEEE, Yokohama, pp 004311–004316 es_ES
dc.description.references Dousoky GM, Ahmed EM, Shoyama M (2013) “MPPT schemes for single-stage three-phase grid-connected photovoltaic voltage-source inverters. In: 2013 IEEE international conference industrial technology (ICIT), pp 600–605 es_ES
dc.description.references Electricity System Operator (ESO). www.nationalgrideso.com es_ES
dc.description.references Al-Shetwi A, Sujod M, Blaabjerg F, Yang Y (2019) Fault ride-through control of grid-connected photovoltaic power plants: a review. Sol Energy 180:340–350 es_ES
dc.description.references Almeida P, Monteiro K, Barbosa P, Duarte J, Ribeiro P (2016) Improvement of PV grid-tied inverters operation under asymmetrical fault conditions. Sol Energy 133:363–371 es_ES
dc.description.references Ding G, Gao F, Tian H, Ma C, Chen M, He G, Liang Y (2016) Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Trans Power Electron 31:4182–4194 es_ES
dc.description.references Miret J, Castilla M, Camacho A, Vicuña LGd, Matas J (2012) Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. In: IEEE transactions on power electronics, vol 27, pp 4262–4271 es_ES
dc.description.references Naderi S, Negnevitsky M, Jalilian A, Hagh M (2016) Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter. Renew Energy 92:484–498 es_ES
dc.description.references Merabet A, Labib L, Ghias AMYM (2018) Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans Smart Grid 9:5699–5709 es_ES
dc.description.references Ting-Chia Ou (2012) A novel unsymmetrical faults analysis for microgrid distribution systems. Electr Power Energy Syst 43:1017–1024 es_ES
dc.description.references Lin W, Ou T (2011) Unbalanced distribution network fault analysis with hybrid compensation. IET Gener Transm Distrib 5:92–100 es_ES
dc.description.references Ting-Chia Ou (2013) Ground fault current analysis with a direct building algorithm for microgrid distribution. Electr Power Energy Syst 53:867–875 es_ES
dc.description.references Ou T-C, Lu K-H, Huang C-J (2017) Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller). Energies 10:488 es_ES
dc.description.references Sadeghkhani I, Hamedani M, Guerrero J, Mehrizi-Sani Ali (2017) A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids. IEEE Trans Smart Grid 8:2138–2148 es_ES
dc.description.references Junyent-Ferre A, Gomis-Bellmunt O, Green T, Soto-Sanchez D (2011) Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Trans Power Electron 26(12):3744–3753 es_ES
dc.description.references Castilla M, Miret J, Sosa JL, Matas J, de Vicuña LG (2010) Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans Power Electron 25(12):2930–2940 es_ES
dc.description.references Camacho A, Castilla M, Miret J, Vasquez JC, Alarcón-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Trans Ind Electron 60(4):1429–1441 es_ES
dc.description.references Sosa JL, Castilla M, Miret J, Matas J, Al-Turki YA (2016) Control strategy to maximize the power capability of PV three-phase inverters during voltage sags. IEEE Trans Power Electron 31(4):3314–3323 es_ES
dc.description.references Lin F-J et al (2015) Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control. IEEE Trans Ind Electron 62(9):5516–5528 es_ES
dc.description.references Hunter G, Andrade I, Riedemann J, Blasco-Gimenez R, Peña R (2016) Active and reactive power control during unbalanced grid voltage in PV systems. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp 3012–3017 es_ES
dc.description.references Rodrıguez J, Pontt J, Silva CA, Correa P, Lezana P, Cortes P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE TransInd Electron 54(1):495–503 es_ES
dc.description.references Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921 es_ES
dc.description.references Lei M et al (2018) An MPC-based ESS control method for PV power smoothing applications. IEEE Trans Power Electron 33(3):2136–2144 es_ES
dc.description.references Hussain I, Singh B (2014) Grid integration of large capacity solar PV plant using multipulse VSC with robust PLL based control. In: Power India International Conference (PIICON), 2014 6th IEEE, Delhi, pp 1–6 es_ES
dc.description.references Bayrak G, Kabalci E, Cebecı M (2014) Real time power flow monitoring in a PLL inverter based PV distributed generation system. In: Power Electronics and Motion Control Conference and Exposition (PEMC), 2014 16th International, Antalya, pp 1035–1040 es_ES
dc.description.references Yagnik UP, Solanki MD (2017) Comparison of L, LC & LCL filter for grid connected converter. In: 2017 International conference on trends in electronics and informatics (ICEI), Tirunelveli, pp 455–458 es_ES
dc.description.references Gupta AK, Saxena R (2016) Review on widely-used MPPT techniques for PV applications. In: 2016 International conference on innovation and challenges in cyber security (ICICCS-INBUSH), Noida, pp 270–273 es_ES
dc.description.references Schmidt H, Burger B, Bussemas U, Elies S (2009) How fast does an MPP tracker really need to be?. In: Proc. of 24th EuPVSEC, pp 3273–3276 es_ES
dc.description.references Abu-Rub H, Malinowski M, Al-Haddad K (2014) Power electronics for renewable energy systems, transportation and industrial applications. Wiley, Hoboken es_ES
dc.description.references Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, vol 37. Wiley, Hoboken es_ES
dc.description.references Peng FZ, Lai J-S (1996) Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans Instrum Meas 45(1):293–297 es_ES
dc.description.references Mitsugi Y, Yokoyama A (2014) Phase angle and voltage stability assessment in multi-machine power system with massive integration of PV considering PV’s FRT requirements and dynamic load characteristics. In: 2014 international conference on power system technology, Chengdu, pp 1112–1119 es_ES
dc.description.references IEEE-SA Standards Board (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (IEEE Std 1547) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem