- -

Power control of a grid-connected PV system during asymmetrical voltage faults

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Power control of a grid-connected PV system during asymmetrical voltage faults

Mostrar el registro completo del ítem

Hunter, G.; Riedemann, J.; Andrade, I.; Blasco-Gimenez, R.; Peña, R. (2019). Power control of a grid-connected PV system during asymmetrical voltage faults. Electrical Engineering. 101(1):239-250. https://doi.org/10.1007/s00202-019-00769-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201170

Ficheros en el ítem

Metadatos del ítem

Título: Power control of a grid-connected PV system during asymmetrical voltage faults
Autor: Hunter, Gustavo Riedemann, Javier Andrade, Iván Blasco-Gimenez, Ramon Peña, Rubén
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Under voltage faults, grid-tied photovoltaic inverters should remain connected to the grid according to fault ride-through requirements. Moreover, it is a desirable characteristic to keep the power injected to grid ...[+]
Palabras clave: Solar power generation , Current control , Power generation
Derechos de uso: Reserva de todos los derechos
Fuente:
Electrical Engineering. (issn: 0948-7921 )
DOI: 10.1007/s00202-019-00769-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00202-019-00769-x
Código del Proyecto:
info:eu-repo/grantAgreement/FONDECYT//11180092/
info:eu-repo/grantAgreement/FONDAP//CONICYT%2FFONDAP%2F15110019/
Agradecimientos:
This work was funded by Conicyt Chile Under Project FONDECYT 11180092. The financial support given by CONICYT/FONDAP/15110019 is also acknowledged.
Tipo: Artículo

References

Greentech Media Research “By 2023, the world will have 1 trillion Watts of installed solar PV capacity”. https://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaci

Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98

Hong Chih-Ming, Ting-Chia Ou, Kai-Hung Lu (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50:270–279 [+]
Greentech Media Research “By 2023, the world will have 1 trillion Watts of installed solar PV capacity”. https://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaci

Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98

Hong Chih-Ming, Ting-Chia Ou, Kai-Hung Lu (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50:270–279

Ou TC, Hong CM (2014) Dynamic operation and control of microgrid hybrid power systems. Energy 66:314–323

Prakash SL, Arutchelvi M, Sharon SS (2015) Simulation and performance analysis of MPPT for single stage PV grid connected system. In: 2015 IEEE 9th international conference on Intelligent systems and control (ISCO), Coimbatore, pp 1–6

Moghadasi A, Sargolzaei A, Moghaddami M, Sarwat AI, Yen K (2017) Active and reactive power control method for three-phase PV module-integrated converter based on a single-stage inverter. In: 2017 IEEE applied power electronics conference and exposition (APEC), Tampa, FL, pp 1357–1362

L Hi, Xu Y, Adhikari S, Rizy DT, Li F, Irminger P (2012) Real and reactive power control of a three-phase single-stage PV system and PV voltage stability. 2012 IEEE power and energy society general meeting, San Diego, CA, pp 1–8

Shao R, Wei R, Chang L (2014) A multi-stage MPPT algorithm for PV systems based on golden section search method. 2014 IEEE applied power electronics conference and exposition—APEC 2014, Fort Worth, TX, pp 676–683

Zapata JW, Kouro S, Aguirre M, Meynard T (2015) Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. Industrial Electronics Society, IECON 2015 - 41st annual conference of the IEEE, Yokohama, pp 004311–004316

Dousoky GM, Ahmed EM, Shoyama M (2013) “MPPT schemes for single-stage three-phase grid-connected photovoltaic voltage-source inverters. In: 2013 IEEE international conference industrial technology (ICIT), pp 600–605

Electricity System Operator (ESO). www.nationalgrideso.com

Al-Shetwi A, Sujod M, Blaabjerg F, Yang Y (2019) Fault ride-through control of grid-connected photovoltaic power plants: a review. Sol Energy 180:340–350

Almeida P, Monteiro K, Barbosa P, Duarte J, Ribeiro P (2016) Improvement of PV grid-tied inverters operation under asymmetrical fault conditions. Sol Energy 133:363–371

Ding G, Gao F, Tian H, Ma C, Chen M, He G, Liang Y (2016) Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Trans Power Electron 31:4182–4194

Miret J, Castilla M, Camacho A, Vicuña LGd, Matas J (2012) Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. In: IEEE transactions on power electronics, vol 27, pp 4262–4271

Naderi S, Negnevitsky M, Jalilian A, Hagh M (2016) Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter. Renew Energy 92:484–498

Merabet A, Labib L, Ghias AMYM (2018) Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans Smart Grid 9:5699–5709

Ting-Chia Ou (2012) A novel unsymmetrical faults analysis for microgrid distribution systems. Electr Power Energy Syst 43:1017–1024

Lin W, Ou T (2011) Unbalanced distribution network fault analysis with hybrid compensation. IET Gener Transm Distrib 5:92–100

Ting-Chia Ou (2013) Ground fault current analysis with a direct building algorithm for microgrid distribution. Electr Power Energy Syst 53:867–875

Ou T-C, Lu K-H, Huang C-J (2017) Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller). Energies 10:488

Sadeghkhani I, Hamedani M, Guerrero J, Mehrizi-Sani Ali (2017) A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids. IEEE Trans Smart Grid 8:2138–2148

Junyent-Ferre A, Gomis-Bellmunt O, Green T, Soto-Sanchez D (2011) Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Trans Power Electron 26(12):3744–3753

Castilla M, Miret J, Sosa JL, Matas J, de Vicuña LG (2010) Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans Power Electron 25(12):2930–2940

Camacho A, Castilla M, Miret J, Vasquez JC, Alarcón-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Trans Ind Electron 60(4):1429–1441

Sosa JL, Castilla M, Miret J, Matas J, Al-Turki YA (2016) Control strategy to maximize the power capability of PV three-phase inverters during voltage sags. IEEE Trans Power Electron 31(4):3314–3323

Lin F-J et al (2015) Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control. IEEE Trans Ind Electron 62(9):5516–5528

Hunter G, Andrade I, Riedemann J, Blasco-Gimenez R, Peña R (2016) Active and reactive power control during unbalanced grid voltage in PV systems. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp 3012–3017

Rodrıguez J, Pontt J, Silva CA, Correa P, Lezana P, Cortes P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE TransInd Electron 54(1):495–503

Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921

Lei M et al (2018) An MPC-based ESS control method for PV power smoothing applications. IEEE Trans Power Electron 33(3):2136–2144

Hussain I, Singh B (2014) Grid integration of large capacity solar PV plant using multipulse VSC with robust PLL based control. In: Power India International Conference (PIICON), 2014 6th IEEE, Delhi, pp 1–6

Bayrak G, Kabalci E, Cebecı M (2014) Real time power flow monitoring in a PLL inverter based PV distributed generation system. In: Power Electronics and Motion Control Conference and Exposition (PEMC), 2014 16th International, Antalya, pp 1035–1040

Yagnik UP, Solanki MD (2017) Comparison of L, LC & LCL filter for grid connected converter. In: 2017 International conference on trends in electronics and informatics (ICEI), Tirunelveli, pp 455–458

Gupta AK, Saxena R (2016) Review on widely-used MPPT techniques for PV applications. In: 2016 International conference on innovation and challenges in cyber security (ICICCS-INBUSH), Noida, pp 270–273

Schmidt H, Burger B, Bussemas U, Elies S (2009) How fast does an MPP tracker really need to be?. In: Proc. of 24th EuPVSEC, pp 3273–3276

Abu-Rub H, Malinowski M, Al-Haddad K (2014) Power electronics for renewable energy systems, transportation and industrial applications. Wiley, Hoboken

Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, vol 37. Wiley, Hoboken

Peng FZ, Lai J-S (1996) Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans Instrum Meas 45(1):293–297

Mitsugi Y, Yokoyama A (2014) Phase angle and voltage stability assessment in multi-machine power system with massive integration of PV considering PV’s FRT requirements and dynamic load characteristics. In: 2014 international conference on power system technology, Chengdu, pp 1112–1119

IEEE-SA Standards Board (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (IEEE Std 1547)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem