Resumen:
|
[EN] Successful plant survival depends upon the proper integration of information from the environment with endogenous cues to regulate growth and development. We have investigated the interplay between ambient temperature ...[+]
[EN] Successful plant survival depends upon the proper integration of information from the environment with endogenous cues to regulate growth and development. We have investigated the interplay between ambient temperature and hormone action during the regulation of hypocotyl elongation, and we have found that gibberellins (GAs) and auxin are quickly and independently recruited by temperature to modulate growth rate, whereas activity of brassinosteroids (BRs) seems to be required later on. Impairment of GA biosynthesis blocked the increased elongation caused at higher temperatures, but hypocotyls of pentuple DELLA knockout mutants still reduced their response to higher temperatures when BR synthesis or auxin polar transport were blocked. The expression of several key genes involved in the biosynthesis of GAs and auxin was regulated by temperature, which indirectly resulted in coherent variations in the levels of accumulation of nuclear GFP-RGA (repressor of GA1) and in the activity of the DR5 reporter. DNA microarray and genetic analyses allowed the identification of the transcription factor PIF4 (phytochrome-interacting factor 4) as a major target in the promotion of growth at higher temperature. These results suggest that temperature regulates hypocotyl growth by individually impinging on several elements of a pre-existing network of signaling pathways involving auxin, BRs, GAs, and PIF4.
[-]
|
Agradecimientos:
|
We thank G. Choi (KAIST, Daejeon, South Korea), C. Fankhauser (University of Lausanne, Lausanne, Switzerland), T. Guilfoyle (Department of Biochemistry, University of Missouri, MO, USA), N. P. Harberd (Department of Plant ...[+]
We thank G. Choi (KAIST, Daejeon, South Korea), C. Fankhauser (University of Lausanne, Lausanne, Switzerland), T. Guilfoyle (Department of Biochemistry, University of Missouri, MO, USA), N. P. Harberd (Department of Plant Sciences, University of Oxford, Oxford, UK), E. Huq (University of Texas, Austin, TX, USA), T-p Sun (Department of Biology, Duke University, Durham, USA), S. G. Thomas (Rothamsted Research, Hertfordshire, UK), G. Vert (Institut de Biologie Integrative des Plantes, Montpellier, France), Z. Y. Wang (Department of Plant Biology, Carnegie Institution, Stanford, USA), Y. Yin (Plant Science Institute, Iowa State University, Ames, IA, USA), and the Arabidopsis Biological Resource Center for seeds; and X. W. Deng (Yale University, New Haven, CT, USA) for antibodies against RPT5. We also thank Dr Jorge Casal (Universidad de Buenos Aires, Buenos Aires, Argentina) for helpful suggestions on this work. Work in the authors' laboratories is funded by grant BIO2007-60923 from the Spanish Ministry of Science and Innovation and by grant 167890/110 from the Norwegian Research Council. JG-B was supported by a JAE pre-doctoral fellowship from CSIC.
[-]
|