- -

Classification of Honey Pollens with ImageNet Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of Honey Pollens with ImageNet Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López García, Fernando es_ES
dc.contributor.author Valiente González, José Miguel es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.contributor.author Juan-Borras, María del Sol es_ES
dc.contributor.author Visquert Fas, Mario es_ES
dc.contributor.author Atienza-Vanacloig, Vicente es_ES
dc.contributor.author Agustí-Melchor, Manuel es_ES
dc.date.accessioned 2024-01-08T19:03:41Z
dc.date.available 2024-01-08T19:03:41Z
dc.date.issued 2023 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201636
dc.description.abstract [EN] The classification of honey pollen grains is performed in order to clas- sify honey according to its botanical origin, which is of great importance in terms of marketing. This visual work is currently done by human specialists counting and classifying the pollen grains in microscopic images. This is a hard, time- consuming, and subject to observer variability task. Thus, automated methods are required to overcome the limitations of the conventional procedure. This paper deals with the automatic classification of honey pollens using five representa- tive Neural Networks coming from the ImageNet Challenge: VGG16, VGG19, ResNet50, InceptionV3 and Xception. The ground truth is composed of 9983 sam- ples of 16 different types of pollens corresponding to citrus and rosemary pollens and its companions. The best result was obtained with the InceptionV3 network, achieving an accuracy of 98.15%, that outperforms the results obtained in previous works. es_ES
dc.description.sponsorship This work is part of the project PID2019-106800RB-I00 (2019) of the Ministry of Science and Innovation (MCIN), State Research Agency MCIN/AEI/https://doi.org/10.13039/501100011033/. It is also part of the AGROALNEXT/2022/043 project, financed by theGeneralitat Valenciana, the Next Generation European Union and the Recovery, Transformation and Resilience Plan of the Government of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.relation.ispartof Computer Analysis of Images and Patterns. CAIP 2023. es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pollen Classification es_ES
dc.subject ImageNet Challenge es_ES
dc.subject Deep Learning es_ES
dc.subject Convolutional Neural Networks es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Classification of Honey Pollens with ImageNet Neural Networks es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-031-44240-7_19 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106800RB-I00/ES/ANALISIS POLINICO AUTOMATICO EMPLEANDO REDES NEURONALES CONVOLUCIONALES: APLICACION A LA CLASIFICACION MONOFLORAL DE LA MIEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AGROALNEXT%2F2022%2F043 / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation López García, F.; Valiente González, JM.; Escriche Roberto, MI.; Juan-Borras, MDS.; Visquert Fas, M.; Atienza-Vanacloig, V.; Agustí-Melchor, M. (2023). Classification of Honey Pollens with ImageNet Neural Networks. Lecture Notes in Computer Science. 14185:192-200. https://doi.org/10.1007/978-3-031-44240-7_19 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-031-44240-7_19 es_ES
dc.description.upvformatpinicio 192 es_ES
dc.description.upvformatpfin 200 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14185 es_ES
dc.relation.pasarela S\505670 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem