Mostrar el registro sencillo del ítem
dc.contributor.author | López García, Fernando | es_ES |
dc.contributor.author | Valiente González, José Miguel | es_ES |
dc.contributor.author | Escriche Roberto, Mª Isabel | es_ES |
dc.contributor.author | Juan-Borras, María del Sol | es_ES |
dc.contributor.author | Visquert Fas, Mario | es_ES |
dc.contributor.author | Atienza-Vanacloig, Vicente | es_ES |
dc.contributor.author | Agustí-Melchor, Manuel | es_ES |
dc.date.accessioned | 2024-01-08T19:03:41Z | |
dc.date.available | 2024-01-08T19:03:41Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201636 | |
dc.description.abstract | [EN] The classification of honey pollen grains is performed in order to clas- sify honey according to its botanical origin, which is of great importance in terms of marketing. This visual work is currently done by human specialists counting and classifying the pollen grains in microscopic images. This is a hard, time- consuming, and subject to observer variability task. Thus, automated methods are required to overcome the limitations of the conventional procedure. This paper deals with the automatic classification of honey pollens using five representa- tive Neural Networks coming from the ImageNet Challenge: VGG16, VGG19, ResNet50, InceptionV3 and Xception. The ground truth is composed of 9983 sam- ples of 16 different types of pollens corresponding to citrus and rosemary pollens and its companions. The best result was obtained with the InceptionV3 network, achieving an accuracy of 98.15%, that outperforms the results obtained in previous works. | es_ES |
dc.description.sponsorship | This work is part of the project PID2019-106800RB-I00 (2019) of the Ministry of Science and Innovation (MCIN), State Research Agency MCIN/AEI/https://doi.org/10.13039/501100011033/. It is also part of the AGROALNEXT/2022/043 project, financed by theGeneralitat Valenciana, the Next Generation European Union and the Recovery, Transformation and Resilience Plan of the Government of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.relation.ispartof | Computer Analysis of Images and Patterns. CAIP 2023. | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pollen Classification | es_ES |
dc.subject | ImageNet Challenge | es_ES |
dc.subject | Deep Learning | es_ES |
dc.subject | Convolutional Neural Networks | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Classification of Honey Pollens with ImageNet Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-031-44240-7_19 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106800RB-I00/ES/ANALISIS POLINICO AUTOMATICO EMPLEANDO REDES NEURONALES CONVOLUCIONALES: APLICACION A LA CLASIFICACION MONOFLORAL DE LA MIEL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AGROALNEXT%2F2022%2F043 / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | López García, F.; Valiente González, JM.; Escriche Roberto, MI.; Juan-Borras, MDS.; Visquert Fas, M.; Atienza-Vanacloig, V.; Agustí-Melchor, M. (2023). Classification of Honey Pollens with ImageNet Neural Networks. Lecture Notes in Computer Science. 14185:192-200. https://doi.org/10.1007/978-3-031-44240-7_19 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-031-44240-7_19 | es_ES |
dc.description.upvformatpinicio | 192 | es_ES |
dc.description.upvformatpfin | 200 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14185 | es_ES |
dc.relation.pasarela | S\505670 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |