- -

AI in the newsroom: A data quality assessment framework for employing machine learning in journalistic workflows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

AI in the newsroom: A data quality assessment framework for employing machine learning in journalistic workflows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dierickx, Laurence es_ES
dc.contributor.author Lindén, Carl-Gustav es_ES
dc.contributor.author Opdahl, Andreas es_ES
dc.contributor.author Khan, Sohail es_ES
dc.contributor.author Guerrero Rojas, Diana es_ES
dc.date.accessioned 2024-01-10T09:12:32Z
dc.date.available 2024-01-10T09:12:32Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201692
dc.description.abstract [EN] AI-driven journalism refers to various methods and tools for gathering, verifying, producing, and distributing news information. Their potential is to extend human capabilities and create new forms of augmented journalism. Although scholars agreed on the necessity to embed journalistic values in these systems to make AI-driven systems accountable, less attention is paid to data quality, while the results' accuracy and efficiency depend on high-quality data. However, data quality remains complex to define insofar as it is a multidimensional, highly domain-dependent concept. Assessing data quality in the context of AI-driven journalism requires a broader and interdisciplinary approach, relying on the challenges of data quality in machine learning and the ethical challenges of using machine learning in journalism. These considerations ground a conceptual data quality assessment framework that aims to support the collection and pre-processing stages in machine learning. It aims to contribute to strengthening data literacy in journalism and to make a bridge between scientific disciplines that should be viewed through the lenses of their complementarity. es_ES
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Data quality assessment es_ES
dc.subject Journalism es_ES
dc.subject Ethics es_ES
dc.subject Machine learning es_ES
dc.subject Artificial intelligence es_ES
dc.title AI in the newsroom: A data quality assessment framework for employing machine learning in journalistic workflows es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16440
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dierickx, L.; Lindén, C.; Opdahl, A.; Khan, S.; Guerrero Rojas, D. (2023). AI in the newsroom: A data quality assessment framework for employing machine learning in journalistic workflows. Editorial Universitat Politècnica de València. 217-225. https://doi.org/10.4995/CARMA2023.2023.16440 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16440 es_ES
dc.description.upvformatpinicio 217 es_ES
dc.description.upvformatpfin 225 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16440 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem