- -

A Machine Learning Approach to Constructing Weekly GDP Tracker Using Google Trends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Machine Learning Approach to Constructing Weekly GDP Tracker Using Google Trends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Armas, Jean Christine es_ES
dc.contributor.author R. Mapa, Cherrie es_ES
dc.contributor.author T. Guliman, Ma. Ellysah Joy es_ES
dc.contributor.author G. Castañares, Michael Lawrence es_ES
dc.contributor.author S. Centeno, Genna Paola es_ES
dc.date.accessioned 2024-01-10T10:45:58Z
dc.date.available 2024-01-10T10:45:58Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201694
dc.description.abstract [EN] The outbreak of the COVID-19 pandemic further highlighted the limitation of existing traditional indicators as policy formulation, particularly during crisis periods, demands timely and granular data. We construct the first weekly GDP tracker in the Philippines using topic- and category- based Google Trends search volumes with the aid of machine learning models. We find that our weekly GDP Tracker is a useful high-frequency tool in nowcasting economic activity, especially during periods of extreme economic duress as the trends and developments in the actual GDP growth are well-captured by the model. Our weekly Tracker was able to capture about 96 percent of the slumpobserved in actual GDP growth in Q2 2020, reflecting the tracker’s overall good performance and the potential of the use of Google Trends. The top three Google Trends searches in predicting GDPgrowth using the SHAP interpretability tool are “unemployment”, “subsidy”, and “investment”. We also showed that the machine learning-based GDP tracker outperforms the traditional autoregression models under study in terms of lower root mean square error (RMSE) for both train and test datasets. Thus, pending the availability of quarterly national accounts, our weekly GDP tracker can serve as useful complementary surveillance tool for monitoring economic activity. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Nowcasting es_ES
dc.subject GDP es_ES
dc.subject Google Trends es_ES
dc.subject Machine learning models es_ES
dc.subject Neural networks es_ES
dc.title A Machine Learning Approach to Constructing Weekly GDP Tracker Using Google Trends es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16039
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Armas, JC.; R. Mapa, C.; T. Guliman, MEJ.; G. Castañares, ML.; S. Centeno, GP. (2023). A Machine Learning Approach to Constructing Weekly GDP Tracker Using Google Trends. Editorial Universitat Politècnica de València. 55-62. https://doi.org/10.4995/CARMA2023.2023.16039 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16039 es_ES
dc.description.upvformatpinicio 55 es_ES
dc.description.upvformatpfin 62 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem