- -

Exploring the use of machine learning and explainability in Marketing Mix Modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the use of machine learning and explainability in Marketing Mix Modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kisilevich, Slava es_ES
dc.contributor.author Herrmann, Markus es_ES
dc.date.accessioned 2024-01-10T12:05:54Z
dc.date.available 2024-01-10T12:05:54Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201700
dc.description.abstract [EN] Marketing Mix Modeling (MMM) employs statistical techniques, typically linear regressions, to assess the impact of advertising expenditure on sales. Despite advancements in statistics and machine learning, the field of MMM has remained relatively unchanging due to a few reasons: (1) its primary focus on practical business applications, (2) the proprietary nature of MMM solutions by specialized companies, and (3) the difficulty in interpreting complex models beyond linear regressions for business purposes. Recently, there has been increased emphasis on the interpretability of complex machine learning models. To address this, model explainers such as SHAP have been introduced, enabling the application of non-linear machine learning algorithms in the realm of MMM. This provides a solution to the various issues associated with traditional MMM methods, including variable interactions, non-linear relationships, and interpretability. This presentation outlines a method for incorporating machine learning algorithms with explainability techniques in the context of MMM in the retail industry. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject MMM es_ES
dc.subject Marketing Mix Modeling es_ES
dc.subject Machine Learning es_ES
dc.subject Explainability es_ES
dc.subject SHAP es_ES
dc.title Exploring the use of machine learning and explainability in Marketing Mix Modeling es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kisilevich, S.; Herrmann, M. (2023). Exploring the use of machine learning and explainability in Marketing Mix Modeling. Editorial Universitat Politècnica de València. 235-236. http://hdl.handle.net/10251/201700 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16455 es_ES
dc.description.upvformatpinicio 235 es_ES
dc.description.upvformatpfin 236 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16455 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem