- -

Analysing ride behaviours of shared e-scooter users – a case study of Liverpool

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysing ride behaviours of shared e-scooter users – a case study of Liverpool

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yang, Yuanxuan es_ES
dc.contributor.author Grant-Muller, Susan es_ES
dc.coverage.spatial east=-2.9915726; north=53.4083714; name=Liverpool, Regne Unit es_ES
dc.date.accessioned 2024-01-10T13:19:18Z
dc.date.available 2024-01-10T13:19:18Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201711
dc.description.abstract [EN] The shared e-scooter is a relatively new form of Micromobility service in urban transit. A better understanding of the use of the scheme will help operators and stakeholders promote this travel mode, contributing to a more sustainable, resilient, environmentally friendly and inclusive transportation system. The availability of high resolution sensor-based location data, when co-analysed with socio-demographic survey data allows insights on where, how, and by whom the service is used. This study focuses on analysing the usage pattern of a recently introduced shared e-scooter scheme in Liverpool, UK, combining survey data of users’ sociodemographic attributes and their full trip records at a fine spatiotemporal granularity. Recency-Frequency (RF) segmentation is used to categorise user behaviour based on their frequency and recency of usage, and a Functional Signatures (FS) dataset is used to enrich contextual information on the origin and destination of e-scooter trips. Overall, this study provides insights into the behaviour of users of shared e-scooters and how the behaviours might vary in different user groups regarding sociodemographic characteristics. The developed analysis framework is also readily transferable to other cities. es_ES
dc.description.sponsorship This research has been sponsored by the Alan Turing Institute under grant number R-LEE006. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Micromobility es_ES
dc.subject E-scooter es_ES
dc.subject Location data es_ES
dc.subject Sustainable transportation es_ES
dc.subject Customer segmentation es_ES
dc.title Analysing ride behaviours of shared e-scooter users – a case study of Liverpool es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16422
dc.relation.projectID info:eu-repo/grantAgreement/ATI//R-LEE006 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yang, Y.; Grant-Muller, S. (2023). Analysing ride behaviours of shared e-scooter users – a case study of Liverpool. Editorial Universitat Politècnica de València. 289-296. https://doi.org/10.4995/CARMA2023.2023.16422 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16422 es_ES
dc.description.upvformatpinicio 289 es_ES
dc.description.upvformatpfin 296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16422 es_ES
dc.contributor.funder Alan Turing Institute es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem