Mostrar el registro sencillo del ítem
dc.contributor.author | Yang, Yuanxuan | es_ES |
dc.contributor.author | Grant-Muller, Susan | es_ES |
dc.coverage.spatial | east=-2.9915726; north=53.4083714; name=Liverpool, Regne Unit | es_ES |
dc.date.accessioned | 2024-01-10T13:19:18Z | |
dc.date.available | 2024-01-10T13:19:18Z | |
dc.date.issued | 2023-09-22 | |
dc.identifier.isbn | 9788413960869 | |
dc.identifier.uri | http://hdl.handle.net/10251/201711 | |
dc.description.abstract | [EN] The shared e-scooter is a relatively new form of Micromobility service in urban transit. A better understanding of the use of the scheme will help operators and stakeholders promote this travel mode, contributing to a more sustainable, resilient, environmentally friendly and inclusive transportation system. The availability of high resolution sensor-based location data, when co-analysed with socio-demographic survey data allows insights on where, how, and by whom the service is used. This study focuses on analysing the usage pattern of a recently introduced shared e-scooter scheme in Liverpool, UK, combining survey data of users’ sociodemographic attributes and their full trip records at a fine spatiotemporal granularity. Recency-Frequency (RF) segmentation is used to categorise user behaviour based on their frequency and recency of usage, and a Functional Signatures (FS) dataset is used to enrich contextual information on the origin and destination of e-scooter trips. Overall, this study provides insights into the behaviour of users of shared e-scooters and how the behaviours might vary in different user groups regarding sociodemographic characteristics. The developed analysis framework is also readily transferable to other cities. | es_ES |
dc.description.sponsorship | This research has been sponsored by the Alan Turing Institute under grant number R-LEE006. | es_ES |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023) | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Micromobility | es_ES |
dc.subject | E-scooter | es_ES |
dc.subject | Location data | es_ES |
dc.subject | Sustainable transportation | es_ES |
dc.subject | Customer segmentation | es_ES |
dc.title | Analysing ride behaviours of shared e-scooter users – a case study of Liverpool | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/CARMA2023.2023.16422 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ATI//R-LEE006 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Yang, Y.; Grant-Muller, S. (2023). Analysing ride behaviours of shared e-scooter users – a case study of Liverpool. Editorial Universitat Politècnica de València. 289-296. https://doi.org/10.4995/CARMA2023.2023.16422 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics | es_ES |
dc.relation.conferencedate | Junio 28-30, 2023 | es_ES |
dc.relation.conferenceplace | Sevilla, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16422 | es_ES |
dc.description.upvformatpinicio | 289 | es_ES |
dc.description.upvformatpfin | 296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\16422 | es_ES |
dc.contributor.funder | Alan Turing Institute | es_ES |