- -

The digital divide: An approach through machine learning classifiers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The digital divide: An approach through machine learning classifiers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aleán, Andrés es_ES
dc.contributor.author Nieto Mengotti, Manuel es_ES
dc.date.accessioned 2024-01-11T07:36:10Z
dc.date.available 2024-01-11T07:36:10Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201753
dc.description.abstract [EN] In 2022, 2.9 billion people worldwide lacked access to the internet, thus being unable to benefit from the digital economy (WEF, 2022). Moreover, lacking internet access at home can further exacerbate existing educational and economic inequalities. Thus, it is crucial not only to identify the sociodemographic profile of households that lack internet access, but of those most vulnerable to lacking internet access in the future (Hidalgo et al., 2020). This study applies several widely used machine learning classifiers (logit regression, naïve Bayes, linear discriminant analysis, k-nearest neighbors and random forest; James et al., 2021) to analyze the main socioeconomic internet access drivers for the Mexican population, using household surveys for the period between 2016 and 2020 (INEGI, 2020). Our principal result is that income, education level, and rurality are the main factors determining lack of internet access, both present and future; and that gender and occupation only play a secondary role in explaining the digital divide. These results can inform the formulation of public policies with the aim to secure universal access to the internet, and thus prevent the widening of existing inequalities in development. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Internet access es_ES
dc.subject Machine learning es_ES
dc.subject Forecasting and nowcasting es_ES
dc.title The digital divide: An approach through machine learning classifiers es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aleán, A.; Nieto Mengotti, M. (2023). The digital divide: An approach through machine learning classifiers. Editorial Universitat Politècnica de València. 17-18. http://hdl.handle.net/10251/201753 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16490 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16490 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem