- -

Data frequency and forecast performance for stock markets: A deep learning approach for DAX index

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data frequency and forecast performance for stock markets: A deep learning approach for DAX index

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mendes, Diana A. es_ES
dc.contributor.author Ferreira, Nuno es_ES
dc.contributor.author Mendes, Vivaldo es_ES
dc.date.accessioned 2024-01-11T08:18:26Z
dc.date.available 2024-01-11T08:18:26Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201760
dc.description.abstract [EN] Due to non-stationary, high volatility, and complex nonlinear patterns of stock market fluctuation, it is demanding to predict the stock price accurately. Nowadays, hybrid and ensemble models based on machine learning and economics replicate several patterns learned from the time series. This paper analyses the SARIMAX models in a classical approach and using AutoML algorithms from the Darts library. Second, a deep learning procedure predicts the DAX index stock prices. In particular, LSTM (Long Short-Term Memory) and BiLSTM recurrent neural networks (with and without stacking), with optimised hyperparameters architecture by KerasTuner, in the context of different time-frequency data (with and without mixed frequencies) are implemented. Nowadays great interest in multi-step-ahead stock price index forecasting by using different time frequencies (daily, one-minute, five-minute, and ten-minute granularity), focusing on raising intraday stock market prices. The results show that the BiLSTM model forecast outperforms the benchmark models –the random walk and SARIMAX - and slightly improves LSTM. More specifically, the average reduction error rate by BiLSTM is 14-17% compared to SARIMAX. According to the scientific literature, we also obtained that high-frequency data improve the forecast accuracy by 3-4% compared with daily data since we have some insights about volatility driving forces. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Big Data es_ES
dc.subject Time Series Prediction es_ES
dc.subject SARIMAX model es_ES
dc.subject LSTM and BiLSTM model es_ES
dc.subject German stock market es_ES
dc.title Data frequency and forecast performance for stock markets: A deep learning approach for DAX index es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mendes, DA.; Ferreira, N.; Mendes, V. (2023). Data frequency and forecast performance for stock markets: A deep learning approach for DAX index. Editorial Universitat Politècnica de València. 39-40. http://hdl.handle.net/10251/201760 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16477 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 40 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16477 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem