- -

Use of machine learning techniques in non-probabilistic samples

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of machine learning techniques in non-probabilistic samples

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rueda, Jorge es_ES
dc.contributor.author Cobo, Beatriz es_ES
dc.contributor.author Castro, Luis es_ES
dc.date.accessioned 2024-01-11T08:36:09Z
dc.date.available 2024-01-11T08:36:09Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201763
dc.description.abstract [EN] Non-probabilistic surveys are increasingly used because they are easy and cheap to carry out. Even official statistical agencies are starting to use this type of surveys in their research, due to the difficulty and the amount of resources needed to carry out probabilistic surveys, which are currently the best option due to their reliability. When non-probabilistic surveys are used, the classical estimation methods cannot be used since the initial conditions for carrying them out are not met, so over the years new estimation techniques have been emerging in this type of sampling. Some of the most relevant estimation techniques currently being used are those related to machine learning techniques.In this work we focus on the estimation technique for non-probabilistic samples statistical matching, which can be enhanced and improved if we complement it with a machine learning technique known as XGBoost. We are going to study a variable of interest extracted from a real non-probabilistic survey carried out during the COVID-19 pandemic, and check if by applying such estimations we obtain better results than without applying this type of techniques. es_ES
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine learning es_ES
dc.subject Non-probabilistic sampling es_ES
dc.subject Statistical matching es_ES
dc.subject XGBoost es_ES
dc.title Use of machine learning techniques in non-probabilistic samples es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16416
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rueda, J.; Cobo, B.; Castro, L. (2023). Use of machine learning techniques in non-probabilistic samples. Editorial Universitat Politècnica de València. 241-247. https://doi.org/10.4995/CARMA2023.2023.16416 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16416 es_ES
dc.description.upvformatpinicio 241 es_ES
dc.description.upvformatpfin 247 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16416 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem