- -

Density modelling with functional data analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Density modelling with functional data analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gattone, Stefano A. es_ES
dc.contributor.author Di Battista, Tonio es_ES
dc.date.accessioned 2024-01-11T09:20:16Z
dc.date.available 2024-01-11T09:20:16Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201771
dc.description.abstract [EN] Recent technological advances have eased the collection of big amounts of data in many research fields. In this scenario density estimation may represent an important source of information. One dimensional density functions represent a special case of functional data subject to the constraints to be non-negative and with a constant integral equal to one. Because of these constraints, a naive application of functional data analysis (FDA) methods may lead to non-valid results. To solve this problem, by means of an appropriate transformation, densities are embedded in the Hilbert space of square integrable functions where standard FDA methodologies can be applied. es_ES
dc.format.extent 5 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Bayes space es_ES
dc.subject Density es_ES
dc.subject Functional data analysis es_ES
dc.subject Transformation approach es_ES
dc.title Density modelling with functional data analysis es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16467
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gattone, SA.; Di Battista, T. (2023). Density modelling with functional data analysis. Editorial Universitat Politècnica de València. 87-91. https://doi.org/10.4995/CARMA2023.2023.16467 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16467 es_ES
dc.description.upvformatpinicio 87 es_ES
dc.description.upvformatpfin 91 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16467 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem