- -

Food insecurity trends in the Famine Early Warning Systems Network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Food insecurity trends in the Famine Early Warning Systems Network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carneiro, Bia es_ES
dc.contributor.author Perfetto, Chiara es_ES
dc.contributor.author Resce, Giuliano es_ES
dc.contributor.author Ruscica, Giosuè es_ES
dc.contributor.author Tucci, Giulia es_ES
dc.date.accessioned 2024-01-11T12:18:33Z
dc.date.available 2024-01-11T12:18:33Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201788
dc.description.abstract [EN] Over last 30 years, periodic country analyses elaborated by FEWS NET (Famine Early Warning Systems Network of the United States Agency for International Development) enabled creation of a unique source of knowledge comprising consistent reporting in over two dozen countries. This paper proposes to systematically assess documentation from historical perspective to provide comprehensive overview of food insecurity in FEWS NET covered countries. We propose an integrated machine learning approach to systematically analyse available documentation and generate knowledge. In particular text mining algorithms have been implemented to analyse reports: automated retrieval of high-quality information from text, by finding patterns and trends through machine learning, statistics and linguistics. This enables analysis of large amounts of unstructured text to derive insights. Results show that there is a wide heterogeneity in what is relevant, and in what reports focus on at the territorial level. Many country-level topics are persistent over time with some interesting exception, as Guatemala, Malawi, Niger, and Somalia with more instability. Overall, the evidence show that advances in machine learning and Big Data research offer great potential for international development agencies to leverage the vast information generated from reports to gain new insights, providing analytics that can improve decision-making. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Food insecurity es_ES
dc.subject Early Warning Systems es_ES
dc.subject Text Mining es_ES
dc.title Food insecurity trends in the Famine Early Warning Systems Network es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16433
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Carneiro, B.; Perfetto, C.; Resce, G.; Ruscica, G.; Tucci, G. (2023). Food insecurity trends in the Famine Early Warning Systems Network. Editorial Universitat Politècnica de València. 171-178. https://doi.org/10.4995/CARMA2023.2023.16433 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16433 es_ES
dc.description.upvformatpinicio 171 es_ES
dc.description.upvformatpfin 178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16433 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem