- -

Suitable statistical approaches for novel policies: spatial clusters of childcare’s services in Veneto, Italy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Suitable statistical approaches for novel policies: spatial clusters of childcare’s services in Veneto, Italy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andreella, Angela es_ES
dc.contributor.author Campostrini, Stefano es_ES
dc.coverage.spatial east=12.3152595; north=45.4414662; name=Véneto, Itàlia es_ES
dc.date.accessioned 2024-01-11T12:24:15Z
dc.date.available 2024-01-11T12:24:15Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201790
dc.description.abstract [EN] More and more often, policymakers face complex problems that require suitable information obtainable only from the "intelligence of data." This can be obtained by analyzing several data sets (many of high dimension) and adopting suitable, often "sophisticated," statistical models. Here we deal with policies for affordable and quality childcare, essential to balance work and family life, increase labor market participation, promote gender equality, and fight against fertility decline. Understanding the complex dynamics of demand and supply of childcare services is challenging due to the nature of the data: high-dimensional, complex, and heterogeneous nationwide. Considering the Italian case, this complexity and heterogeneity are partially due to the lack of governance at the regional level leading to immediate and effective new policies challenging. This paper aims to analyze the multidimensional aspect of the supply-demand of childcare services combination in the Veneto Italian region using a novel statistical approach and an innovative dataset. We apply the regionalization approach (a clustering method with spatial constraints) to give an immediate picture of childcare services' supply and demand variability. Our empirical findings confirm how the Veneto region is described by many "sub-regional models," providing a preliminary attempt to demonstrate how socio-demographic factors drive these patterns. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Clustering es_ES
dc.subject Childcare services es_ES
dc.subject Supply and demand es_ES
dc.subject Social services es_ES
dc.subject Spatial proximity es_ES
dc.title Suitable statistical approaches for novel policies: spatial clusters of childcare’s services in Veneto, Italy es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16439
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Andreella, A.; Campostrini, S. (2023). Suitable statistical approaches for novel policies: spatial clusters of childcare’s services in Veneto, Italy. Editorial Universitat Politècnica de València. 205-212. https://doi.org/10.4995/CARMA2023.2023.16439 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16439 es_ES
dc.description.upvformatpinicio 205 es_ES
dc.description.upvformatpfin 212 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16439 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem