- -

A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrera-Llanga, Kevin es_ES
dc.contributor.author Burriel-Valencia, Jordi es_ES
dc.contributor.author Sapena-Bano, Angel es_ES
dc.contributor.author Martinez-Roman, Javier es_ES
dc.date.accessioned 2024-01-12T19:01:36Z
dc.date.available 2024-01-12T19:01:36Z
dc.date.issued 2023-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201883
dc.description.abstract [EN] Induction machines (IMs) play a critical role in various industrial processes but are susceptible to degenerative failures, such as broken rotor bars. Effective diagnostic techniques are essential in addressing these issues. In this study, we propose the utilization of convolutional neural networks (CNNs) for detection of broken rotor bars. To accomplish this, we generated a dataset comprising current samples versus angular position using finite element method magnetics (FEMM) software for a squirrel-cage rotor with 28 bars, including scenarios with 0 to 6 broken bars at every possible relative position. The dataset consists of a total of 16,050 samples per motor. We evaluated the performance of six different CNN architectures, namely Inception V4, NasNETMobile, ResNET152, SeNET154, VGG16, and VGG19. Our automatic classification system demonstrated an impressive 99% accuracy in detecting broken rotor bars, with VGG19 performing exceptionally well. Specifically, VGG19 exhibited high accuracy, precision, recall, and F1-Score, with values approaching 0.994 and 0.998. Notably, VGG19 exhibited crucial activations in its feature maps, particularly after domain-specific training, highlighting its effectiveness in fault detection. Comparing CNN architectures assists in selecting the most suitable one for this application based on processing time, effectiveness, and training losses. This research suggests that deep learning can detect broken bars in induction machines with accuracy comparable to that of traditional methods by analyzing current signals using CNNs. es_ES
dc.description.sponsorship K Barrera-Llanga appreciates the financial support of the Secretary of Higher Education, Science, Technology and Innovation of Ecuador as a personal sponsor entity. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial intelligence es_ES
dc.subject Convolutional neural network es_ES
dc.subject Deep learning es_ES
dc.subject Induction machine es_ES
dc.subject Broken bar detection es_ES
dc.subject Automatic diagnosis es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23198196 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-128013OB-I00//DESARROLLO DE UNA HERRAMIENTA DE AYUDA AL MANTENIMIENTO PREDICTIVO DE AEROGENERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIAICO%2F2022%2F042/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Barrera-Llanga, K.; Burriel-Valencia, J.; Sapena-Bano, A.; Martinez-Roman, J. (2023). A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors. Sensors. 23(19):1-20. https://doi.org/10.3390/s23198196 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23198196 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 37837026 es_ES
dc.identifier.pmcid PMC10575177 es_ES
dc.relation.pasarela S\504835 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem