Mostrar el registro completo del ítem
Barrera-Llanga, K.; Burriel-Valencia, J.; Sapena-Bano, A.; Martinez-Roman, J. (2023). A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors. Sensors. 23(19):1-20. https://doi.org/10.3390/s23198196
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201883
Título: | A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors | |
Autor: | Barrera-Llanga, Kevin | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Induction machines (IMs) play a critical role in various industrial processes but are susceptible to degenerative failures, such as broken rotor bars. Effective diagnostic techniques are essential in addressing these ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/s23198196 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|