- -

A neural network approach for chatter prediction in turning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A neural network approach for chatter prediction in turning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cherukuri, Harish es_ES
dc.contributor.author Pérez Bernabeu, Elena es_ES
dc.contributor.author Sellés, M.A. es_ES
dc.contributor.author Schmitz, Tony L. es_ES
dc.date.accessioned 2024-01-12T19:01:51Z
dc.date.available 2024-01-12T19:01:51Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201888
dc.description.abstract [EN] Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit self-excited vibration. In this paper, an artificial neural network (ANN) is applied to model turning stability. The analytical stability limit is used to generate a data set that trains the ANN. It is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after appropriate training. es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support from the UNC ROI program. Elena Perez-Bernabeu and Miguel Selles also acknowledge support from Universitat Politenica de Valencia (PAID-00-17). Additionally, some of the neural net figures and the 10-fold cross validation figures are based on the TikZ codes provided on StackExchange-TeX by various users. Harish Cherukuri would like to thank them for their valuable advice. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Procedia Manufacturing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Turning es_ES
dc.subject Machine learning es_ES
dc.subject Neural network es_ES
dc.subject Stability es_ES
dc.subject Chatter es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A neural network approach for chatter prediction in turning es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.promfg.2019.06.159 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNC System Research Opportunites Innitiative (ROI)//CSAM//North Carolina Consortium for Self-Aware Machining and Metrology (CSAM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-17/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Cherukuri, H.; Pérez Bernabeu, E.; Sellés, M.; Schmitz, TL. (2019). A neural network approach for chatter prediction in turning. Procedia Manufacturing. 34:885-892. https://doi.org/10.1016/j.promfg.2019.06.159 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 47th SME North American Manufacturing Research Conference (NAMRC 2019) es_ES
dc.relation.conferencedate Junio 10-14,2019 es_ES
dc.relation.conferenceplace Behrend Coll, EEUU es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.promfg.2019.06.159 es_ES
dc.description.upvformatpinicio 885 es_ES
dc.description.upvformatpfin 892 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.identifier.eissn 2351-9789 es_ES
dc.relation.pasarela S\394958 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder UNC System Research Opportunites Innitiative (ROI) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem