Mostrar el registro completo del ítem
Cherukuri, H.; Pérez Bernabeu, E.; Sellés, M.; Schmitz, TL. (2019). A neural network approach for chatter prediction in turning. Procedia Manufacturing. 34:885-892. https://doi.org/10.1016/j.promfg.2019.06.159
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201888
Título: | A neural network approach for chatter prediction in turning | |
Autor: | Cherukuri, Harish Schmitz, Tony L. | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.promfg.2019.06.159 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
The authors gratefully acknowledge financial support from the UNC ROI program. Elena Perez-Bernabeu and Miguel Selles also acknowledge support from Universitat Politenica de Valencia (PAID-00-17). Additionally, some of the ...[+]
|
|
Tipo: |
|