Mostrar el registro completo del ítem
Jorge-Cano, J.; Vieco Pérez, J.; Paredes Palacios, R.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2018). Empirical Evaluation of Variational Autoencoders for Data Augmentation. ScitePress. 96-104. https://doi.org/10.5220/0006618600960104
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201933
Título: | Empirical Evaluation of Variational Autoencoders for Data Augmentation | |
Autor: | Vieco Pérez, Jesús | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
Since the beginning of Neural Networks, different mechanisms have been required to provide a sufficient number of examples to avoid overfitting. Data augmentation, the most common one, is focused on the generation of new ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
ISBN: |
|
|
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.5220/0006618600960104 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
This work was developed in the framework of the PROMETEOII/2014/030 research project "Adaptive learning and multimodality in machine translation and text transcription", funded by the Generalitat Valenciana. The work of ...[+]
|
|
Tipo: |
|