Mostrar el registro sencillo del ítem
dc.contributor.author | Jorge-Cano, Javier | es_ES |
dc.contributor.author | Vieco Pérez, Jesús | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.contributor.author | Sánchez Peiró, Joan Andreu | es_ES |
dc.contributor.author | Benedí Ruiz, José Miguel | es_ES |
dc.date.accessioned | 2024-01-16T10:28:10Z | |
dc.date.available | 2024-01-16T10:28:10Z | |
dc.date.issued | 2018-01-29 | es_ES |
dc.identifier.isbn | 978-989-758-290-5 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201933 | |
dc.description.abstract | Since the beginning of Neural Networks, different mechanisms have been required to provide a sufficient number of examples to avoid overfitting. Data augmentation, the most common one, is focused on the generation of new instances performing different distortions in the real samples. Usually, these transformations are problem-dependent, and they result in a synthetic set of, likely, unseen examples. In this work, we have studied a generative model, based on the paradigm of encoder-decoder, that works directly in the data space, that is, with images. This model encodes the input in a latent space where different transformations will be applied. After completing this, we can reconstruct the latent vectors to get new samples. We have analysed various procedures according to the distortions that we could carry out, as well as the effectiveness of this process to improve the accuracy of different classification systems. To do this, we could use both the latent space and the original space after reconstructing the altered version of these vectors. Our results have shown that using this pipeline (encoding-altering-decoding) helps the generalisation of the classifiers that have been selected. | es_ES |
dc.description.sponsorship | This work was developed in the framework of the PROMETEOII/2014/030 research project "Adaptive learning and multimodality in machine translation and text transcription", funded by the Generalitat Valenciana. The work of the first author is financed by Grant FPU14/03981, from the Spanish Ministry of Education, Culture and Sport. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | ScitePress | es_ES |
dc.relation.ispartof | Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Generative Models | es_ES |
dc.subject | Data Augmentation | es_ES |
dc.subject | Variational Autoencoder | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Empirical Evaluation of Variational Autoencoders for Data Augmentation | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.5220/0006618600960104 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F030//Adaptive learning and multimodality in machine translation and text transcription/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-03981//FPU2014-03981/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Jorge-Cano, J.; Vieco Pérez, J.; Paredes Palacios, R.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2018). Empirical Evaluation of Variational Autoencoders for Data Augmentation. ScitePress. 96-104. https://doi.org/10.5220/0006618600960104 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 13th International Conference on Computer Vision Theory and Applications (VISAPP 2018) | es_ES |
dc.relation.conferencedate | Enero 27-29,2018 | es_ES |
dc.relation.conferenceplace | Funchal, Portugal | es_ES |
dc.relation.publisherversion | https://doi.org/10.5220/0006618600960104 | es_ES |
dc.description.upvformatpinicio | 96 | es_ES |
dc.description.upvformatpfin | 104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\362652 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |