- -

Empirical Evaluation of Variational Autoencoders for Data Augmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empirical Evaluation of Variational Autoencoders for Data Augmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jorge-Cano, Javier es_ES
dc.contributor.author Vieco Pérez, Jesús es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.contributor.author Benedí Ruiz, José Miguel es_ES
dc.date.accessioned 2024-01-16T10:28:10Z
dc.date.available 2024-01-16T10:28:10Z
dc.date.issued 2018-01-29 es_ES
dc.identifier.isbn 978-989-758-290-5 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201933
dc.description.abstract Since the beginning of Neural Networks, different mechanisms have been required to provide a sufficient number of examples to avoid overfitting. Data augmentation, the most common one, is focused on the generation of new instances performing different distortions in the real samples. Usually, these transformations are problem-dependent, and they result in a synthetic set of, likely, unseen examples. In this work, we have studied a generative model, based on the paradigm of encoder-decoder, that works directly in the data space, that is, with images. This model encodes the input in a latent space where different transformations will be applied. After completing this, we can reconstruct the latent vectors to get new samples. We have analysed various procedures according to the distortions that we could carry out, as well as the effectiveness of this process to improve the accuracy of different classification systems. To do this, we could use both the latent space and the original space after reconstructing the altered version of these vectors. Our results have shown that using this pipeline (encoding-altering-decoding) helps the generalisation of the classifiers that have been selected. es_ES
dc.description.sponsorship This work was developed in the framework of the PROMETEOII/2014/030 research project "Adaptive learning and multimodality in machine translation and text transcription", funded by the Generalitat Valenciana. The work of the first author is financed by Grant FPU14/03981, from the Spanish Ministry of Education, Culture and Sport. es_ES
dc.language Inglés es_ES
dc.publisher ScitePress es_ES
dc.relation.ispartof Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Generative Models es_ES
dc.subject Data Augmentation es_ES
dc.subject Variational Autoencoder es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Empirical Evaluation of Variational Autoencoders for Data Augmentation es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.5220/0006618600960104 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F030//Adaptive learning and multimodality in machine translation and text transcription/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-03981//FPU2014-03981/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Jorge-Cano, J.; Vieco Pérez, J.; Paredes Palacios, R.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2018). Empirical Evaluation of Variational Autoencoders for Data Augmentation. ScitePress. 96-104. https://doi.org/10.5220/0006618600960104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th International Conference on Computer Vision Theory and Applications (VISAPP 2018) es_ES
dc.relation.conferencedate Enero 27-29,2018 es_ES
dc.relation.conferenceplace Funchal, Portugal es_ES
dc.relation.publisherversion https://doi.org/10.5220/0006618600960104 es_ES
dc.description.upvformatpinicio 96 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\362652 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem