Mostrar el registro completo del ítem
De Zarzà, I.; De Curtò, J.; Roig, G.; Tavares De Araujo Cesariny Calafate, CM. (2023). LLM Multimodal Traffic Accident Forecasting. Sensors. 23(22). https://doi.org/10.3390/s23229225
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202235
Título: | LLM Multimodal Traffic Accident Forecasting | |
Autor: | de Zarzà, I. de Curtò, J. Roig, Gemma | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/s23229225 | |
Código del Proyecto: |
|
|
Agradecimientos: |
We thank the following funding source from GOETHE-University Frankfurt am Main; "xAIBiology-Hessian.AI". We also acknowledge the support of the R&D project PID2021-122580NBI00, funded by MCIN/AEI/10.13039/501100011033 and ERDF.[+]
|
|
Tipo: |
|