- -

LLM Multimodal Traffic Accident Forecasting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

LLM Multimodal Traffic Accident Forecasting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Zarzà, I. es_ES
dc.contributor.author de Curtò, J. es_ES
dc.contributor.author Roig, Gemma es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2024-01-30T19:01:54Z
dc.date.available 2024-01-30T19:01:54Z
dc.date.issued 2023-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202235
dc.description.abstract [EN] With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) driving assistants with actionable visual and language cues. Using a rich dataset detailing accident occurrences, we juxtaposed the Transformer model against traditional time series models like ARIMA and the more recent Prophet model. Additionally, through detailed analysis, we delved deep into feature importance using principal component analysis (PCA) loadings, uncovering key factors contributing to accidents. We introduce the idea of using real-time interventions with large language models (LLMs) in autonomous driving with the use of lightweight compact LLMs like LLaMA-2 and Zephyr-7b-alpha. Our exploration extends to the realm of multimodality, through the use of Large Language-and-Vision Assistant (LLaVA)-a bridge between visual and linguistic cues by means of a Visual Language Model (VLM)-in conjunction with deep probabilistic reasoning, enhancing the real-time responsiveness of autonomous driving systems. In this study, we elucidate the advantages of employing large multimodal models within DL and deep probabilistic programming for enhancing the performance and usability of time series forecasting and feature weight importance, particularly in a self-driving scenario. This work paves the way for safer, smarter cities, underpinned by data-driven decision making. es_ES
dc.description.sponsorship We thank the following funding source from GOETHE-University Frankfurt am Main; "xAIBiology-Hessian.AI". We also acknowledge the support of the R&D project PID2021-122580NBI00, funded by MCIN/AEI/10.13039/501100011033 and ERDF. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject LLM es_ES
dc.subject VLM es_ES
dc.subject LLaVA es_ES
dc.subject Accident forecasting es_ES
dc.subject Transformers es_ES
dc.subject Time series analysis es_ES
dc.subject PCA loadings es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title LLM Multimodal Traffic Accident Forecasting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23229225 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-122580NB-I00//SISTEMAS INTELIGENTES DE SENSORIZACIÓN PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Goethe-Universität Frankfurt am Main//xAIBiology-Hessian.AI/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation De Zarzà, I.; De Curtò, J.; Roig, G.; Tavares De Araujo Cesariny Calafate, CM. (2023). LLM Multimodal Traffic Accident Forecasting. Sensors. 23(22). https://doi.org/10.3390/s23229225 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23229225 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38005612 es_ES
dc.identifier.pmcid PMC10674612 es_ES
dc.relation.pasarela S\503751 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Goethe-Universität Frankfurt am Main es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem