Mostrar el registro sencillo del ítem
dc.contributor.author | de Zarzà, I. | es_ES |
dc.contributor.author | de Curtò, J. | es_ES |
dc.contributor.author | Roig, Gemma | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.date.accessioned | 2024-01-30T19:01:54Z | |
dc.date.available | 2024-01-30T19:01:54Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202235 | |
dc.description.abstract | [EN] With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) driving assistants with actionable visual and language cues. Using a rich dataset detailing accident occurrences, we juxtaposed the Transformer model against traditional time series models like ARIMA and the more recent Prophet model. Additionally, through detailed analysis, we delved deep into feature importance using principal component analysis (PCA) loadings, uncovering key factors contributing to accidents. We introduce the idea of using real-time interventions with large language models (LLMs) in autonomous driving with the use of lightweight compact LLMs like LLaMA-2 and Zephyr-7b-alpha. Our exploration extends to the realm of multimodality, through the use of Large Language-and-Vision Assistant (LLaVA)-a bridge between visual and linguistic cues by means of a Visual Language Model (VLM)-in conjunction with deep probabilistic reasoning, enhancing the real-time responsiveness of autonomous driving systems. In this study, we elucidate the advantages of employing large multimodal models within DL and deep probabilistic programming for enhancing the performance and usability of time series forecasting and feature weight importance, particularly in a self-driving scenario. This work paves the way for safer, smarter cities, underpinned by data-driven decision making. | es_ES |
dc.description.sponsorship | We thank the following funding source from GOETHE-University Frankfurt am Main; "xAIBiology-Hessian.AI". We also acknowledge the support of the R&D project PID2021-122580NBI00, funded by MCIN/AEI/10.13039/501100011033 and ERDF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | LLM | es_ES |
dc.subject | VLM | es_ES |
dc.subject | LLaVA | es_ES |
dc.subject | Accident forecasting | es_ES |
dc.subject | Transformers | es_ES |
dc.subject | Time series analysis | es_ES |
dc.subject | PCA loadings | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | LLM Multimodal Traffic Accident Forecasting | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s23229225 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-122580NB-I00//SISTEMAS INTELIGENTES DE SENSORIZACIÓN PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Goethe-Universität Frankfurt am Main//xAIBiology-Hessian.AI/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | De Zarzà, I.; De Curtò, J.; Roig, G.; Tavares De Araujo Cesariny Calafate, CM. (2023). LLM Multimodal Traffic Accident Forecasting. Sensors. 23(22). https://doi.org/10.3390/s23229225 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s23229225 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 38005612 | es_ES |
dc.identifier.pmcid | PMC10674612 | es_ES |
dc.relation.pasarela | S\503751 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Goethe-Universität Frankfurt am Main | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |