- -

A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kolios, Athanasios es_ES
dc.contributor.author Mytilinou, Varvara es_ES
dc.contributor.author Lozano-Mínguez, Estívaliz es_ES
dc.contributor.author Salonitis, Konstantinos es_ES
dc.date.accessioned 2024-02-07T19:02:50Z
dc.date.available 2024-02-07T19:02:50Z
dc.date.issued 2016-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202408
dc.description.abstract This paper presents an application and extension of multiple-criteria decision-making (MCDM) methods to account for stochastic input variables. More in particular, a comparative study is carried out among well-known and widely-applied methods in MCDM, when applied to the reference problem of the selection of wind turbine support structures for a given deployment location. Along with data from industrial experts, six deterministic MCDM methods are studied, so as to determine the best alternative among the available options, assessed against selected criteria with a view toward assigning confidence levels to each option. Following an overview of the literature around MCDM problems, the best practice implementation of each method is presented aiming to assist stakeholders and decision-makers to support decisions in real-world applications, where many and often conflicting criteria are present within uncertain environments. The outcomes of this research highlight that more sophisticated methods, such as technique for the order of preference by similarity to the ideal solution (TOPSIS) and Preference Ranking Organization method for enrichment evaluation (PROMETHEE), better predict the optimum design alternative. es_ES
dc.description.sponsorship This work was supported by Grant EP/L016303/1 for Cranfield University, Centre for Doctoral Training in Renewable Energy Marine Structures (REMS) (http://www.rems-cdt.ac.uk/) from the U.K. Engineering and Physical Sciences Research Council (EPSRC). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multi-criteria decision methods es_ES
dc.subject Wind turbine es_ES
dc.subject Support structures es_ES
dc.subject Weighted sum method WSM es_ES
dc.subject Weighted product method WPM es_ES
dc.subject Technique for the order of preference by similarity to the ideal solution TOPSIS es_ES
dc.subject Analytical hierarchy process AHP es_ES
dc.subject Preference ranking organization method for enrichment evaluation PROMETHEE es_ES
dc.subject Elimination et choix traduisant la realité ELECTRE es_ES
dc.subject Stochastic inputs. es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en9070566 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FL016303%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Kolios, A.; Mytilinou, V.; Lozano-Mínguez, E.; Salonitis, K. (2016). A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies. 9(7). https://doi.org/10.3390/en9070566 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en9070566 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\324896 es_ES
dc.contributor.funder Cranfield University es_ES
dc.contributor.funder UK Research and Innovation es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem