- -

Efficient high-order methods based on golden ratio for nonlinear system

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Efficient high-order methods based on golden ratio for nonlinear system

Show full item record

Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2011). Efficient high-order methods based on golden ratio for nonlinear system. Applied Mathematics and Computation. 217(9):4548-4556. doi:10.1016/j.amc.2010.11.006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52544

Files in this item

Item Metadata

Title: Efficient high-order methods based on golden ratio for nonlinear system
Author: Cordero Barbero, Alicia Hueso Pagoaga, José Luís Martínez Molada, Eulalia Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We derive new iterative methods with order of convergence four or higher, for solving nonlinear systems, by composing iteratively golden ratio methods with a modified Newton's method. We use different efficiency indices ...[+]
Subjects: Convergence order , Efficiency indices , Fixed point iteration , Newton's method , Nonlinear systems , Efficiency index , Golden ratio , High-order methods , Modified Newton's method , Newton's methods , Numerical tests , Order of convergence , Theoretical result , Newton-Raphson method , Numerical methods
Copyrigths: Reserva de todos los derechos
Source:
Applied Mathematics and Computation. (issn: 0096-3003 )
DOI: 10.1016/j.amc.2010.11.006
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.amc.2010.11.006
Thanks:
This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539.
Type: Artículo

This item appears in the following Collection(s)

Show full item record